UCRL -ID 108725

Techniques, Processes,
and Measures for
Software Safety and Reliability

D. Sparkman

May 30, 1992
Version 3.0

NSSP
Nuclear Systems Safety Program

Lawrence Livermore National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.

Techniques, Processes,
and Measures for
Software Safety and Reliability

D. Sparkman

Manuscript date: May 30, 1992
Version 3.0

NSSP
Nuclear Systems Safety Program

Contents

1. Technical SUMMATY........cccccuiiiiiiiiiiciecc e 4
2. PUTPOSE .ottt 5
3L SCOP...eitiiiitctc e 5
4. Report Organization. ..o 5
5. Definitions and ACIONYIMScccviuiiiiiniiiiiiiiinc s 5
5.1 Definitionscccviuiiiiiiiniiiiiii e 5
5.2 ACIONYIMIS .ottt 9
6. Reliability in Safety-Related Systems ..., 10
7. Software Life Cycle Practices...........cccocoviniiiiiniiniiiiiiiicncccccccc, 11
7.1 Quality Planning and Procedures............coooveueiiirinieiiiceccce s 11
7.2 Software Development ProCesses.........ccocvuieeuiiiiiicieiiicie s 11
7.3 Monitoring Software and Hardware............ccoouovriiiiiiiicce 11
7.4 Design APPIOachesccoviiiiiiiiiiicii s 12
7.5 Software Module Design QUalityccooeiiiiiiiiiiiiiccc 12
7.6 Reviews and AUdits........cccoiiiiiiiiii s 12
7.7 Specifying Reliability and Safety Requirements............ccoooeveeeiiieiiiiinneniicieecn 13
7.8 Requirements Checking ..o 13
7.9 Performance SpecifiCations............ccoeeueieiiiciniiccc s 14
7.10 Formal Methodsccucuiiiiiiiiiiiiiiicicicicicic s 14
7.11 Programming Languages.........ccccoeeuriiiiriiiiiiiiiiciiicrceeescesescs s 14
7.12 Complexity and Scalability ... 15
8. Safety CONCEPLS......ccciviiiiiiiiiicc s 15
8.1 Safety PIANScvveuiiieicicicieicicceeeee ettt et 15
8.2 Hazard Severity and Software Safety Integrity Levels........ccccccoceeveiiievccccncnccnns 16
8.3 Safety ANALYSIS .c.cueveuiueieieieiiieieicieieieteeeete ettt et 16
8.3.1 Software Specific Safety Analysis........ccccocovivviniiiiiii 17
9. Software Reliability Processes and Measurements...........ccccccceveeviicninicininnnnns 17
9.1 CONCEPE PRASE ...ttt 19
9.1.1 Set Reliability GOalS........cccccoeueuiuiuimimiiiiiiiicicccccee e 19
9.1.2 Identify and Categorize Failure Modes............cccceceuvururiiinrniiiinricen 19
9.1.3 Fault-tree MOdelNgc.ccccuiuiiiiiiiiiiiiiicccicccceeee e 23
9.1.4 Event-tree ANalysiS........ccccceruriiiiiiiiiririiiciiicreeceerreeeee e 23
9.1.5 Cause-consequence Diagram ..o 24
9.1.6 Reliability Block Diagram..........cccccoccueueiiiiiiiiiiiiiiiceiceeenceeeeeeeeneenenenes 24
9.1.7 Probability Modeling..........c.ccccueuiuiiiiiiiiiiicceeeeeercee e 25
9.2 Requirements ANalysis PRaSeccccvweuricuricunicinicieciecieeeeeie e senans 27
9.2.1 Operational Profile ANalysisccccccevuruirirriiiinrriiirrrcceeeeeeeeeeeeen 27
9.2.2 Markov MOdelingccccccururiririiiiiiirieiicicirireceiee et 27
9.2.3 Monte Carlo MOdelingccccccucurururiiiiiiiririririniciereceeerereeeeeeeeeseeeeeeeeeeee 29
9.2.4 Certifying Tools and Translators............cccccoceeiiiiiiieicieeecececeeennes 30
9.3 DESIGN PRASE ...ttt 30
9.3.1 Determine Factors That Influence Reliabilitycccoceuneueuniecunicinicinicennnens 30

9.3.2 Reliability Time Line Model..........ccccccceiiiiiiiiiiiiicceeeccecceeeennes 31

9.3.3 Fault Detection and Diagnosis..........c.ccccccueueueuiicuimieieieieeereeeeeeeeeneenenenes 31

9.3.4 Safety Bag....ccoueuiuiiiiiiiciic e 32

9.3.5 Sneak Circuit ANALYSisccccevueieuiiriririiicirrecceereeeeee e 32

9.3.6 Retry Fault RECOVETYccccciuiiiiiiiiiiiiiiccccccccccee e 33

9.3.7 n-Version Programmuingc.cccccevvriiiiniiiiiniicecenennnes 33

9.3.8 Recovery Block Programmingcccccccciiiiiiiiiiiccececeeeceeennes 34

9.3.9 DeSign MEtTICScovviiiiiiiiiiiiiicc 34

9.3.10 Petri Nets......cceviiiiiii e 35

9.4 Implementation PRASEccceuieiieinieiieiricisciecie ettt sesaes 35
9.5 TSt PRASE ...ttt 36
9.5.1 Certifying Acquired or Reused Software Reliability...........ccccccoeoeeuiiccnnes 36

9.5.2 Reliability Growth Modelingcccccveueurierrierricunincineeieeeieeeeeeeseeeeneeen 36

9.5.3 Software TESHNEccccceuiuiuiuiiiiiiiccceeeeeeee e 37

9.5.3.1 Unit or Module TeStingccccccccueueuiuiiiiiiieiieccecccceeeeeenennes 38

9.5.3.1.1 Structural Unit Testing (White-BoX).......ccccvevrvverivrnrnneneseeeeene 38

9.5.3.1.2 Functiona Unit Testing (Black-BOX)cccourrernernerieeniecnieenes 39

9.5.3.1.3 Mutation Testing (White-BoX)ccceererirrenirereenee e 39

9.5.3.2 Functional TeStINGcccceveiimieieiiicieicc e 40

9.5.3.2.1 Functional Specification Testing (Black-BOX)........c.cceevrereeriereenn 40

9.5.3.2.2 Stress Testing (BIaCK-BOX)cccceererereneneiisiese e 41

9.5.3.2.3 Boundary-Value Testing (Black-BoX)cccceevvrivenininieseceieen 41

9.5.3.2.4 Process Simulation Testing (Black-BoX)ccovevvvvvninvennneneeeen 42

9.5.3.2.5 Equivalence-Class Testing (Black-BoX)ccecerurerieinererieerienenen. 42

9.5.3.3 Software Integration Testing.............ccccoeeveieiiiieiiiiicece, 43

9.5.3.3.1 Bottom-up Testing (White-Box and Black-BoOX)ccccceveeruenennas 43

9.5.3.3.2 Top-down Testing (White-Box and Black-BOX)..........ccccevereeieenenne. 43

9.5.3.3 3 Big-Bang Testing (White-Box and Black-BOX)ccccververieneence 44

9.5.3.3.4 Sandwich Testing (White-Box and Black-BOX)..........ccccevvevvevennne. 44

9.5.3.4 System TeStiNgcccccuvivuiriiniiiiiiiiinc 45

9.5.3.4.1 Probabilistic Testing (Black-BoX).......ccceevvivrvrrnerinreneseseseeeeenes 45

9.5.3.5.2 Performance Testing (Black-BoX)........cccoveeireineninennennenre 46

9.6 Installation and Verification Phase.............cccocccuniciniiiniciiiniicicciccccccciseeines 46
9.6.1 System CertifiCationccoeeueieiieiiiiicice s 46

9.6.2 Acceptance Testing (Black-BOX)........ccccccurruriuririiiiniininiciiciscinisieiisicisiesenn 47

9.7 Operation and Maintenance Phase............cccocvuciiiiiiininiiiiccccceeeen 48
9.7.1 Monitoring Degradation of System...........cccooeueiviriiniiiiiinieicec 48

9.7.2 RoOt-cause ANAlYSiscccoceeueiiiieiiiiicieiecee s 48

9.7.3 Regression Testing (White-Box and Black-BoX)cccccouviciiruiininicinnncne. 49

10. Other Issues Addressed by Standardscocccceueurniicicrninniceeenieenenenes 49
10.1 Man-machine INtErfacescccevieeueirinenieeieinineceieiricecieteeretee ettt sessen 49
10.2 Subcontract COMPLANCEc.cccvviiiiiiiiiiiiiicii s 49
10.3 Personnel Qualifications and Trainingcccccevviiiniiniiiiccnes 50
10.4 Inspection Personnel..........cccciiiiiiiiiiiiiiiiiiii 50
10.5 Configuration Managementcccocoeviviiiiiniiiiie e 50
10.6 Software, Hardware, and FIIMWAre.........ccccoveevierieiiieeeerieeeete ettt eeve e 50
11.CONCIUSIONocuiiiiiiicc s 50

Appendix A. Techniques and Procedures for Quality Assurance Procedures
Cross-Referenced to Standards...........ccooeiiiiiiiiiiiiiiicccce, 52

Appendix B. Techniques and Procedures for Software Safety Cross-Referenced to
Standards.ccueiiiii s 53

Appendix C. Techniques and Procedures for Software Reliability Cross-
Referenced to Standards............coviiiiiiiiiii 55

Appendix D. Glossary of Metrics..........ccccovviiiiiiiniiiiiiiiiiccccce, 57

BIDLIOGIAPRY ...vvieiiiccicte ettt 62

Techniques, Processes, and Measures for
Software Safety and Reliability

1. Technical Summary

Presented herein is a summary and comparison of domestic and international standards
pertaining to software reliability and safety. The standards are reviewed for similarities
and differences and are supplemented with views collected from experts in the field of
high-integrity software. There is a growing consensus among experts that the
development of high-integrity software requires the application of good software
engineering processes and techniques, supplemented by measurements of their
effectiveness and of the reliability of the product.

Several standards focus on safety planning and analysis. These are IEEEP1228, MIL-
STD882B, and MoD00-55. Others focus more on general quality assurance planning and
activities. These include DoDR2167A and 2168, FAA[13B, 16A and 18A,
IEC65A(Secretariat)122, IEC880, and MoD[00-55. Some recommend specific safety-
related analyses. Failure modes and effects analysis are recommended by IEEE[352 and
577 and IECI65A(Secretariat)122), system hazard analysis by MIL-STD882B, MoD00-56,
IEC65A(Secretariat)122, and software-specific hazard analysis by MIL-STD(882B,
MoD100-56.

Several standards define classification schemes for hazard severity or software safety
integrity levels and make recommendations on practices to apply on the basis of a
system's classification level. The standards that employ such schemes are MIL-STD 882B,
IECI65A (Secretariat)122, and MoDI00-55 and 00-56. The new revision of IEEE(1012 may
also incorporate such an approach.

A unique set of standards is the pair consisting of IEEE982.1 and 982.2, which contain of a
set of definitions of 39 measures, many of which are applicable to reliability measurement,
and guidance for their use. AFSCP[800-14 also identifies a subset of quality indicators.

The majority of standards recommend using a lifecycle-phased approach to software
development wherein certain quality increasing and safety evaluation practices are
applied within each phase . The planning activities recommend include using software
quality assurance plans, configuration management plans, verification and validation
plans, and coding standards. Also recommended are technical reviews and audits, the use
of well-defined error reporting procedures, performing risk management (from the point
of view of project failure), and conducting safety analyses. Only three standards make
specific recommendations for the use of formal methods (mathematical specification and
proof techniques); these are IECI880, IEC65A(Secretariat)122 and MoDI00-55.
IEC65A (Secretariat)122 and IEC880 also make recommendations either for the selection
of specific programming languages or for the acceptable properties of programming
languages.

IECI65A (Secretariat)122, which is not yet finalized and is in preliminary use, and MIL-
STD(882B are the most specific standards and may be the most highly regarded with
respect to the development of software for use in safety-related applications. IEEEP1228
also specifically addresses this class of software. Since this standard will not be finalized
until late 1992, its adequacy is unproven.

2. Purpose

The purpose of this report is to provide a detailed survey of current recommended
practices and measurement techniques for the development of reliable and safe software-
based systems. This report is intended to assist the United States Nuclear Reaction
Regulation (NRR) in determining the importance and maturity of the available techniques
and in assessing the relevance of individual standards for application to instrumentation
and control systems in nuclear power generating stations. Lawrence Livermore National
Laboratory (LLNL) provides technical support for the Instrumentation and Control
System Branch (ICSB) of NRR in advanced instrumentation and control systems,
distributed digital systems, software reliability, and the application of verification and
validation for the development of software. This report responds to FIN(L-1867, Project IL.

3. Scope

This report includes an evaluation of domestic and international, industry and
government accepted practices and standards relating to software reliability and safety-
related software systems. This information is supplemented with viewpoints from experts
in these fields. Many processes, practices, and techniques for estimating and predicting
software reliability are discussed in these standards and publications. This report specifies
the processes, practices, and techniques recommended by the reviewed standards. It also
provides a description of these processes, practices and techniques.

This interim report incorporates AFSCP800-14, DoD2167A and 2168; FAA[013B, 016A,
and 018A; IEC65A(Secretariat)122, 880, and 1014; IEEE279, 352, 577, 730, 982.1, 982.2 and
P1228; MoDI00-55 and 00-56; MIL-STD882B, and the referenced publications. The
international and domestic standards arena contains additional standards related to
safety-related systems that are not included in this report. These standards include DOE
5480.5, 5480.6 and 5481.1B; EIASEB6 and SEB6A; HMSO Parts 1 and 2;
IECI65A(Secretariat)96; IEE 5; IEEE603 and 627; and MIL-STD[1574A.

4. Report Organization

This report contains four major sections. The first, Section 6, discusses the issue of
reliability in a safety-related software product. The second, Section 7, discusses software
reliability and quality practices that span multiple life cycles. Section 8 discusses safety
issues derived from the standards reviewed. Section 9 details many techniques for
estimating the reliability of a software product. This section is subdivided into the life
cycle phases, each phase discussing the software reliability techniques associated with
that life cycle phase. Section 9 also identifies several software reliability measures or
metrics that can be used with each technique. Appendix A contains a matrix of the major
techniques and processes identified in Sections 7 and 10; Appendix B the safety processes
and procedures from Section 8; Appendix C the specific reliability and safety techniques
identified in Section 9; and Appendix D contains brief descriptions of the indicator and
predictor measures for the techniques in Section 9.

5. Definitions and Acronyms

5.1 Definitions

Important definitions based on current and draft standards and published literature have
been included to assist in the comprehension of this report. When more than one
applicable definition is available, all have been included.

accident. (1) An unplanned event or series of events that results in death, injury, illness,
environmental damage, or damage to or loss of equipment or property.
IEEEP1228 Draft E, July 1991. (2) An unintended event or sequence of events that
causes death, injury, environmental or material damage. MoD[00-56 Defence
Standard, May 1989.

availability. (1) The degree to which a system or component is operational and accessible
when required for use. Often expressed as a probability. IEEEI610-1976. (2) The
excepted fraction of time during which a software component or system is
functioning acceptably (Musa, Iannino, and Okumoto, 1988).

concept phase. (1) The period of time in the software development cycle during which
user needs are described and evaluated through documentation (for example,
statement of needs, advance planning report, project initiation memo, feasibility
studies, system definition, documentation, regulations, procedures, or policies
relevant to the project). (2) The initial phase of a software development project, in
which the user needs are described and evaluated through documentation (for
example, statement of needs, advance planning report, project initiation memo,
feasibility studies, system definition, documentation, regulations, procedures, or
polices relevant to the project). IEEE610.12-1990.

data encapsulation. See encapsulation.

design phase. The period of time in the software life cycle during which the designs for
the architecture, software components, interfaces, and data are created,
documented, and verified to satisfy requirements. IEEE610.12-1990.

encapsulation. A software development technique that consists of isolating a system
function or a set of data and operations on those data within a module and
providing precise specifications for the module. [EEE610.12-1990.

event. A significant happening that may originate in the environment or the system.
MoDI00-56 Defence Standard, May 1989.

failure. (1) The termination of the ability of a functional unit to perform its required
function. (2) An event in which a system or system component does not perform a
required function within specified limits. A failure may be produced when a fault
is encountered. IEEE610.12-1990.

fault. (1) An accidental condition that causes a functional unit to fail to perform its
required function. (2) A manifestation of an error in software. A fault, if
encountered, may cause a failure. Synonymous with bug. IEEE610.12-1990.

firmware. The combination of a hardware device and computer instructions and data that
reside as read-only software on that device. Notes: (1) This term is sometimes
used to refer only to the hardware device or only to the computer instructions or
data, but these meanings are deprecated. (2) The confusion surrounding this term
has led some to suggest that it be avoided altogether. IEEE610.12-1990.

formal method. Mathematically based method for the specification, design, and
production of software. Also includes a logical inference system for formal proofs
of correctness and a methodological framework for software development in a
formally verifiable way. MoD[Defence Standard 00-55, formal mathematical method.

formal proof of correctness. A way of proving, by a mathematical proof using formal
rules, that a computer program follows its specification. MoDIDefence Standard 00-
55.

implementation phase. The period of time in the software life cycle during which a
software product is created from design documentation and debugged.
IEEE610.12-1990.

installation and check-out phase. The period of time in the software life- cycle during
which a software product is integrated into its operational environment and
tested in this environment to ensure that it performs as required. IEEE610.12-
1990.

measure. A quantitative assessment of the degree to which a software product or process
possesses a given attribute. [EEE610.12-1990.

operation and maintenance phase. The period of time in the software life cycle during
which a software product is employed in its operational environment, monitored
for satisfactory performance, and modified as necessary to correct problems or to
respond to changing requirements. IEEE610.12-1990.

programmable electronic system (PES). A system, based on one or more computers,
connected to sensors and/or actuators on a plant for the purpose of control,
protection or monitoring. IECI65A(Secretariat)122, August 1991.

quality assurance. (1) A planned and systematic pattern of all actions necessary to
provide adequate confidence that an item or product conforms to established
technical requirements. (2) A set of activities designed to evaluate the process by
which products are developed or manufactured. Contrast with: quality control
(1). IEEE(610.12-1990.

reliability. The ability of a system or component to perform its required functions under
stated conditions for a specified period of time. IEEE610.12-1990. The probability
of failure-free operation of a computer program for a specified time in a specified
environment (Musa, Iannino, and Okumoto, 1988).

requirements phase. The period of time in the software life cycle during which the
requirements for a software product are defined and documented. IEEE(610.12-
1990.

retirement phase. The period of time in the software life cycle during which support for a
software product is terminated. [EEE[610.12-1990.

risk. (1) A measure that combines both the likelihood that a system hazard will cause
an accident and the severity of that accident. IEEEP1228 Draft E, July 1991. (2) The
expected detriment per unit time to a person or population from a given cause.
IEEE577-1976. (3) The combination of the frequency, or probability, and the
consequence of a specified hazardous event. The concept of risk always has two

elements; the frequency or probability with which a hazard occurs and the
consequences of the hazardous event. IECI65A(Secretariat)122, August 1991.

safety. The expectation that a system does not, under defined conditions, lead to a state in
which human life, limb, and health, or economics or environment, are
endangered. Note: For system safety, all causes of failures which lead to an unsafe
state shall be included: hardware failures, software failures, failures due to
electrical interference or to human interaction, and failures in the controlled
object. Some of these types of failure, in particular random hardware failures,
may be quantified using such measures as the failure rate in the dangerous mode
of failure or the probability of the protection system failing to operate on demand.
System safety also depends on many factors that cannot be quantified but can
only be considered qualitatively. IECI65A(Secretariat)122, August 1991.

safety integrity. The likelihood of a Programmable Electric System achieving its safety
functions under all stated conditions within a stated period of time.
IEC165A(Secretariat)122, August 1991.

safety-related software. (1) Software whose inadvertent response to stimuli, failure to
respond when required, response out of sequence, or response in unplanned
combination with others can result in an accident. Also, software that is intended
to mitigate or to recover from the result of an accident. IEEE[P1228 Draft E, July
1991. Safety-critical software. (2) Software that ensures that a system does
not endanger human life, limb, and health. IEC65A (Secretariat)122, Aug 1991.

semi-formal method. Procedure-based method for the specification, design, and
production of software. Examples include logic or function block diagrams,
sequence diagrams, time petri nets, and truth tables. Derived from
IEC165A(Secretariat)122, Aug 1991.

software development process. The process by which user needs are translated into a
software product. The process involves translating user needs into software
requirements, transforming the software requirements into design, implementing
the design in code, testing the code and, sometimes, installing and checking the
software for operational use. Note: These activities may overlap or be performed
iteratively. IEEE610.12-1990.

software diversity. A software development technique in which two or more functionally
identical variants of a program are developed from the same specification by
different programmers or programming teams with the intent of providing error
detection, increased reliability, additional documentation, or reduced probability
that programming or compiler errors will influence the end results. See also:
diversity. IEEE610.12-1990.

software life cycle phase. The period of time that begins when a software product is
conceived and ends when the software is no longer available for use. The
software life cycle typically includes a concept phase, requirements phase, design
phase, implementation phase, test phase, installation and check-out phase, and
operation and maintenance phase, and may include a retirement phase. Note:
These phases may overlap or be performed iteratively. IEEE610.12-1990. Also
referred to as: life cycle, lifecycle, and software lifecycle.

software product. (1) The complete set of computer programs, procedures, associated
documentation, and data designated for delivery to a user. IEEE(610.12-1990. (2)
Any of the individual items in (1). IEEE610.12-1990.

software reliability. The probability that software will not cause the failure of a system
for a specified time under specified conditions. The probability is a function of the
inputs to and use of the system as well as a function of the existence of faults in
the software. The inputs to the system determine whether existing faults, if any,
are encountered. IEEE[982.1-1988.

structured methodology. A step-by-step method for systematically perceiving and
partitioning a problem or system. Some main features of structured
methodologies include (1) a logical order of thought that breaks large problems
into manageable stages, (2) identification of the total system, including the
environment, (3) decomposition of data and functions in the required system, (4)
use of checklists, intutive, and pragmatic overhead. Examples of structured
methodologies include Jackson Systems Development (JSD), Modular Approach
to Software Construction (MASCOT), Structured Analysis and Design Technique
(SADT), and real-time Yourdon). Derived from IECI65A(Secretariat)122, Aug 1991.

system hazard. A system condition that is a prerequisite to an accident. IEEEP1228 Draft
E, July 1991.

test phase. The period of time in the software life cycle during which the components of a
software product are evaluated and integrated, and the software product is
evaluated to determine whether requirements have been satisfied. IEEE610.12-
1990.

unit testing. Testing of individual hardware or software units or groups of related units.
IEEE(610.12-1990.

5.2 Acronyms
AFSCP Air Force Systems Command Pamphlet
ANS American Nuclear Society
ASQC American Society for Quality Control
CCFA Common-cause failure analysis
CPU Central processing unit
DoD Department of Defense
DOE Department of Energy
EIA Electronics Industry Association
EPRI Electric Power Research Institute
FAA Federal Aviation Administration
FIPS Federal Information Processing Standards
FMEA Failure Mode and Effects Analysis
HAZOP Hazard and Operability
HMSO Her Majesty's Stationary Office
ICSB Instrumentation and Control System Branch
IEC International Electrotechnical Commission
IEE Institute of Electrical Engineers (British)
IEEE Institute of Electrical and Electronic Engineers
LLNL Lawrence Livermore National Laboratory
MID-STD Military Standard

MoD Ministry of Defence (British)

NRC Nuclear Regulatory Commission
NRR Nuclear Reactor Regulation
NSAC Nuclear Safety Analysis Center
NUREG Nuclear Regulatory Guide

SQA Software Quality Assurance

6. Reliability in Safety-Related Systems

Historically, quantitative measures have been used to evaluate the reliability of hardware
components. When the need for evaluating the reliability of software arose, some of the
measures were applied to software. The usefulness of these software reliability measures
has been discussed in many recent articles and at conferences. Pilsworth (1988), in his
overview of MoD Defence Standards 00-55 and 00-56, summarizes the concerns and new
approaches:

The approach to safety in the defense industry has been similar to many other
industries where great reliance has been placed on the ability to predict the
probability of a given safety-related event occurring. At the system level this
method is still viable. However, if some functions are to be implemented in
computer software, then this approach is not viable at the lower levels. The failure
rate of computer software cannot be predicted with sufficient precision before
design commences. Computer software failure modes are virtually impossible to
predict. Therefore, the approach to implementing safety functions in computer
software places great reliance on the requirements definition, specification, design
and development methods employed.

Pilsworth’s claim is supported by Musa (1989) and Butler (1991), who contend that high-
degree reliability measurements cannot be determined for applications such as control
software for nuclear power generating stations, avionics, and weapons control systems.

The applicability of mathematical algorithms and models to measure reliability is
currently being discussed in industry publications and at conferences. Musa states that at
the present time, reliability growth models are insufficiently precise for ultra-reliable
systems. These systems require failure rates an order of magnitude lower than those of
the commercial systems, to which such models are more commonly applied. It is
generally agreed that reliability measurements, including reliability growth models, are
applicable to software products that require only minimal or low reliability (failure rate

greater than 1073 failures per hour) (Butler and Finelli, 1991). However, the ability of these
algorithms and models to measure reliability values needed for ultra-reliable (failure rate

less than 1077 failures per hour) software systems is disputed. For an ultra-reliable
software system requiring a software failure rate of

10710 failures per hour, 1,141,550 years of testing may be necessary to produce a single
error (Butler and Finelli, 1991).

This indicates that reliability models are insufficient as the only method for assessing
software reliability. Other methods are needed to supplement the reliability models. One
is the application of quality-enhancing software development and operation processes. It
is believed that safe and reliable systems can be produced by using quality processes
(Musa, Iannino, and Okumoto, 1987). The principal factors that affect software reliability,
such as fault generation, fault removal, and the environment, should be considered first.
Fault generation depends primarily on the characteristics of the code created or modified
and the software development process. The characteristics of created or modified code
include size and complexity, and the characteristics of the development process involve

10

software engineering technologies, tools used, and experience level of personnel. Musa
says that fault removal depends on time, operational profile, and the quality of the repair
activity. The environment may be modeled with an operational profile that can be used to
test the system for detecting faults. Because some foregoing factors are probabilistic in
nature and operate over time, software reliability models are generally random processes
(Musa, Ianinno, and Okumoto, 1987).

7. Software Life Cycle Practices

Safety-related software development methods and software reliability techniques are
performed throughout all phases of the software life cycle. The domestic and international
standards reviewed in this report recommend several processes that span multiple life
cycle phases. These processes may improve the quality of the software by reducing the
number of software faults, thus having a positive influence on the software's reliability.
This section describes these processes. Appendix A maps these processes and the
information in Section 10 to the individual standards where they are recommended.

7.1 Quality Planning and Procedures

The standards DoD[2168, FAA013B, 016A, 018A, IEC65A (Secretariat)122, IEEE730, and
MoDI[00-55 detail quality assurance plans for building safety and reliability into a
software system. DoD[2167A and IECI880 expand beyond specifying a plan and include
detailed procedures to be performed in software development and maintenance. IEEE279
is the only standard that does not specifically identify a quality assurance plan or
software development process but states that “quality levels should be achieved through
the specification of requirements known to promote high quality.”

IECI65A (Secretariat)122, IEEE(730, and FAAI018A specify techniques, methods, and tools
that software developers may use to implement quality assurance. Other items addressed
in the plans are coding standards (IEC/65A(Secretariat)122, IEEE(730 and P1228, IECI880,
and DoD2167A), documentation standards (IEEE(730), and software metrics (IEEE(730).

7.2 Software Development Processes

The standards listed in Section 7.1 recommend a common set of software development
processes, including requirements definition, design, testing, configuration control, error
reporting and corrective action, and verification and validation. DoD2167A and IEEE[730
extend this set to include risk management of technical, cost, and schedule issues. Some
standards specifically list the documentation produced by these processes, whereas others
say only that good documentation should be provided.

7.3 Monitoring Software and Hardware

To achieve increased overall system reliability, IECI65A(Secretariat)122 and IEC[880 both
suggest that software supervise itself along with the hardware. These supervision tasks
include monitoring the parts of the memory that contain code or static data for changes.
Requirements to enable the software to monitor both the hardware and software are
included in the IEC65A(Secretariat)122 software requirements specification. The
monitoring functions generally are executed on a separate cpu. Monitoring software can
inadvertently become a cause of system failures.

11

7.4 Design Approaches

IECI65A (Secretariat)122 and IECI880 recommend design approaches that can be used
when developing a software product. Some of these approaches are defense-in-depth,
graceful degradation, redundancy, and hardware and software functional diversity. These
approaches are implemented by techniques described in Section 9. MoD[00-55 does not
address these fault-detection or fault-tolerant approaches but does recommend adding
software code to check data values at boundaries between modules or components.
Appropriate action must then be taken if anomalies are found.

7.5 Software Module Design Quality

The complexity of a software product's architecture can increase the probability of the
occurrence of a fault. IEC65A(Secretariat)122 requires design methods that facilitate
abstraction, modularity, and other features to control complexity. Modularity,
information hiding, and data encapsulation can facilitate software maintenance (IEC 65A
[Secretariat]122, 1989). Measuring the number of entry and exit points can identify
components that do not properly encapsulate their data and are overly complex. These
components are likely to result in high operating system overhead and may be difficult to
test completely.

Minimizing the number of entry and exit points in a component and limiting the number
of functions in a software component are recognized in the software industry as key
features in good structured design and programming. It is recommended that each
software component have one entry and one exit point for each major function and that
the number of functions per software component be limited to five (IEEE 982.2, 1988). It
may sometimes be necessary to increase the number of exit points to allow for error
handling.

7.6 Reviews and Audits

Review and audit processes are highly effective in software fault detection and correction.
Detecting software faults earlier in the life cycle phases, prior to system integration
testing, reduces the cost of removing them. Several standards (DoD(1521B, DOE 5481.1B,
and IEEE(1028) are specifically devoted to reviews or audits, and most of the software
quality assurance standards address these topics.

All the software quality-assurance planning standards and guidelines that were reviewed
for this report require reviews and audits. MIL-STD882B and MoDI00-55 refer to these
reviews as safety reviews. Characteristics of the reviews and audits that were identified in
the reviewed standards can be summarized as follows:

. Reviews and audits require items to be measurable against predetermined values.
All standards specify that software requirements and hardware and software
interfaces must be testable, verifiable, and realizable. In a flow-control
application, an example of one such testable requirement might be “Shut off the
pumps within 5.0 seconds if the mean water level over the past 4.0 seconds was
above 100.0 meters” (Parnas, 1990). In meeting this criterion, requirements and
other products from the software development processes can be compared with
the expected results during a review or audit.

12

. Actual timing of the review or audit is specified in IECI65A(Secretariat)122,
IEEE 730, DoD12167A, and MoD[00-55. Other standards use phrases such as
“review after every stage.”

o Reviews and audits are subdivided into process and product categories. Process
reviews and audits assess the activities performed during the software
development. Examples of these reviews and audits are postmortem review, error
reporting and correction process review, and managerial review of the quality-
assurance plan implementation. Product reviews and audits critique the
deliverables of a software process. Examples are requirements review, design
review, verification and validation plan review, and physical audit.

The quality of the review or audit process influences the effectiveness of detecting
software faults. As software faults are detected and corrected, confidence in the reliability
of the software improves. The review and audit processes should be analyzed for their
effectiveness in detecting software faults. The time an inspection team prepares for and
conducts the review or audit should be compared with the number of software faults
detected. The result can then be used as an index (number of hours spent detecting an
error) of the effectiveness of the inspection process. Given industry trends, it is more
likely that a high value of this index indicates that the reviews and audits processes are
not being effectively implemented. However, in an organization with excellent software
development processes, the hours spent detecting an error may be high because fewer
errors are present, and thus more time may be required to discover any errors.

7.7 Specifying Reliability and Safety Requirements

IEC(880 links software reliability requirements to system requirements by stating that
software reliability requirements are an expansion of the system reliability requirements.
IEC880 implies that system reliability requirements should be partitioned among the
hardware, software, and firmware components. IEEEP1228 requires that the software
requirements specification or the safety plan explicitly include specifications for software
to avoid and control safety hazards.

MIL-STD882B requires system safety design requirements to be specified after a review
of pertinent standards, specifications, regulations, design handbooks, and other guidance
for applicability to the design of the safety-related system. MIL-STD(882B identifies a
separate process specifically for software requirements hazard analysis. Within this
process, there are tasks to ensure that system safety design requirements are correctly and
completely specified, that they have been properly translated into software safety
requirements, and that the software safety requirements will appropriately influence the
software design.

7.8 Requirements Checking

Software and system requirements specifications are the foundation for the software end
product. If these specifications are not correct, the software may not perform its intended
functions. In the best case, the system may then be unacceptable. In the worst case, the
system may have hidden software functions or faults that allow an unsafe state to occur.
For safety-related software, it is necessary to validate the software and system
specifications or requirements. Requirements are traced to the software design and
architecture to ensure that no requirement is missing or any unwanted function has been
added. The requirements that can be traced to more than one software design or
architecture component can be analyzed for possible functionality conflicts. Usually,

13

tracing the software specifications or requirements is a manual process using matrices,
where the software requirements are the rows of the matrix and the design components
are the columns. For each requirement, checks are placed in the corresponding design-
component cell or cells that satisfy the requirement. Some computer-aided software
engineering (CASE) tools may provide assistance with this activity.

7.9 Performance Specifications

The performance of a safety-related system is crucial to its successful operation. Initiation
of the various hardware and software components is determined by the timely responses
of other components. If one component fails to respond at an expected time, an event
triggering a fault recovery function may be initiated; or worse, the system could fail,
causing an unsafe state to be entered. IEC/880 requires a separate software performance
specification, whereas IEEE(730 and DoD2167A include performance issues with the
software requirements.

7.10 Formal Methods

IECI65A(Secretariat)122 and MoD[00-55 link formal methods to a quality development
process by requiring that formal mathematical methods be used in specifying and
designing the software. At the highest software safety integrity level, level 4,
IEC65A (Secretariat)122 highly recommends the use of formal methods, semi-formal
methods, and/or a structured methodology. MoDI00-55 also requires that the software
code be analyzed by a static analysis tool. LLNL's Formal Methods report, Formal Methods
in the Development of Safety Critical Software Systems, UCRL-ID-109416, addresses this topic
in detail.

7.11 Programming Languages

Programming languages may affect the safe functioning of a software system. For
example, the programming language chosen and its implementation can affect the results
of integer and floating-point arithmetic. Language constructs can allow unsafe practices to
be coded into the software product, thus increasing risk. A programming language can
allow a software program to jump to an arbitrary memory location or even overwrite an
arbitrary memory location. Some programming languages specifically disallow these
constructs. Some languages require strong data type definition and perform type
checking to avoid the misuse of program variables and also to prevent running out of
memory at run time.

IEC65A (Secretariat)122 and 880 make similar recommendations on the use of
programming languages. A programming language should support strong typing of
variables, structured programming methods, run-time type and array bound checking,
parameter checking, and means to verify the source code with a minimum of effort.
IEC65A(Secretariat)122 contains a table of current programming languages and the
recommended usage of these languages at the various software safety integrity levels
(level 4 being the highest). ADA, Modula-2, PASCAL, and FORTRAN 77 are highly
recommended for software safety integrity levels 3 and 4 only if a subset of the language
is used. However, Cullyer, Goodenough, and Wichmann (1991) do not recommend even a
subset of FORTRAN 77 for safety-related systems. Cullyer et al. further recommend that
at least static code analysis, and preferably formal proofs, be used in conjunction with the
subsets of ADA, Modula-2, and PASCAL. No recommendation is provided for use of an
assembly language for either of these software safety integrity levels. C, PL/M, and

14

BASIC are not recommended by IEC/65A(Secretariat)122 for implementing software at the
software safety integrity levels 3 or 4.

7.12 Complexity and Scalability

Complexity metrics can provide very useful design guidance and indications of product
quality when they are used as part of a well-managed software development effort.
However, using these metrics to predict safe performance has very little support in
experience. IEEE982.1 recommends several design-complexity metrics, including
Software Science Measures, Graph-theoretic Complexity for Architecture, Cyclomatic
Complexity, Data or Information Flow Complexity, and Design Structure.

Closely related to complexity is scalability, changing the size of a real-time system.
Scaling a real-time system can have unexpected effects on system response, reliability,
and correctness. Presently, many issues in scalability are under active study, although
some results (such as performance analysis techniques) are being used in practice. LLNL's
work in progress report Real-time Systems Complexity and Scalability, Draft 2, November
1991, addresses these issues in more detail.

8. Safety Concepts

Safety is a system property. Achieving and maintaining safety involves all aspects of a
system, including human, electronic, and mechanical components. Many standards do
not clearly distinguish between software reliability and safety. Examples of this are
IECI65A (Secretariat)122, IECI880, MoD00-55 and DoD2167A, which discuss safety as a
part of their overall software quality requirements. Other standards, such as IEEEP1228,
MIL-STD(882B, and MoDI00-56, are devoted specifically to safety. Appendix B includes a
table that maps the information provided in this section to the individual standards.

This report identifies software reliability as the probability that the software will not cause
the failure of a system for a specified time under specified conditions (IEEE(982.1, 1988).
Safety-enhancing practices ensure that the system will operate without creating a system
hazard. The essential issue is that a highly reliable system can have very infrequent but
catastrophic failure modes. On the other hand, a safety-related system may "fail-safe,"
shutting down the system it is controlling to prevent the system from proceeding further
into a hazardous state. The reliability of such a system may be considered low because the
system has failed to continue to operate.

In a fail-safe system with two computers operating in active redundancy, the outputs of
the two are compared. When they disagree, it is assumed that one of the computer
systems has failed. If a high degree of safety is required, both computers need to be shut
down and the system brought to a safe fall-back state. This is necessary since the system
cannot safely be controlled without redundancy. However, if a high degree of reliability is
required, and three or more computer systems are used for redundancy, there is a
possibility that the faulty computer can be identified and the operation continued without
any redundancy.

8.1 Safety Plans

Each of the standards, IEEEP1228, MIL-STD(882B, and MoDI[00-55, requires a safety plan
that is part of a safety program. This plan should be updated throughout the software life
cycle phases. The safety plan includes management and technical procedures and
practices to be performed in developing a safety-related system. The procedures and

15

practices described in a safety plan include: (1) organization and structure of the safety
program, including functional relationships and lines of communication, (2) review and
approval procedures for the safety-related tasks, (3) personnel qualifications for safety-
related tasks, (4) recording results of the safety-related tasks such as a safety records log
containing the results of hazard analyses and their resolutions, (5) configuration
management activities, (6) staffing and funding requirements, (7) training requirements
for operation and maintenance personnel, and 8) risk assessment and hazard analyses
procedures.

8.2 Hazard Severity and Software Safety Integrity Levels

The degree to which software safety techniques and processes are applied may have a
direct correlation with the severity of the hazard when the system fails. Two similar
concepts, hazard severity level and software safety integrity level, can be used to
determine the necessity for applying specific safety-related processes. Many standards,
including IEEE (352, 577 and P1228, recommend or require the categorization of failures
but do not associate these levels with specific techniques and processes. MoDI[00-55 and
00-56 map the categorization to specific processes and documentation. MIL-STD882B and
IEC65A(Secretariat)122 extend this categorization to specific techniques within the
processes. The IEEE1012 Software Verification and Validation Plan Standard working
group is investigating a similar concept to be included in the standard's next revision.

The hazard severity level, as described by MIL-STD882B and MoDI[00-56, uses four
categories (catastrophic, critical, marginal, and negligible) to provide guidance in
determining the techniques and processes to be implemented in the development of a
safety-related system. Both standards also contend that the probability of the occurrence
of a hazard must be considered in determining the techniques and processes to be
implemented. MIL-STD(882B uses five probability levels ranging from frequent to
improbable—in contrast to MoDI[00-56's six levels, which include an additional level
termed “incredible.”

The concept of software safety integrity levels is used in IEC/65A(Secretariat)122. These
levels are determined by the level of risk associated with the software. The consequences
of the loss of human life, injury or illness to humans, environmental pollution, and loss of
or damage to property are considered when determining the software safety integrity
level. IECI65A(Secretariat)122 identifies five levels (level 4 down to level 0) of software
safety integrity: very high, high, medium, low, and non-safety-related. These levels map
to degrees of recommendation (highly recommended, recommended, no
recommendation, and not recommended) applied to various techniques and processes
that the standards identify. This report describes some of those recommendations in the
discussions of techniques in Section 9.

8.3 Safety Analysis

One method of performing system safety analysis is failure mode and effects analysis
(FMEA). IEEE(352 and 577 discuss FMEA extensively. IEEE352 classifies the FMEA as a
reliability analysis. The goal of a FMEA is to identify the modes of system failure and
their consequences. Often the FMEA is extended to include common-mode failures of
redundant components. This extension is called common-cause failure analysis (CCFA).
CCFA lists the system failures that could occur in all operational modes (automatic,
manual, test, and bypass). Additional common-mode failures can be identified by
reviewing the system boundary conditions and the customer’s view as to what is a failure.
Environmental effects such as fires, earthquakes, floods, and electromagentic interference

16

also should be considered. FMEA and CCFA are system-wide safety methods. They will
not be discussed in depth in this report. However, techniques performed during a FMEA
and CCFA that are applicable to assessing software reliability are discussed in Section 9.

Another method of safety analysis is a software Hazard and Operability Study (HAZOP).
HAZOP covers all phases of the life cycle. A team of engineers (computer, instrument,
electrical, process, safety, and operational) headed by a trained hazard analyst examine
the software system and its operation for environmental failures that may lead to a
hazardous situation. The HAZOP differs from a FMEA in that the focus of a FMEA is on
the failure modes of components of the system, whereas a HAZOP analyzes the functions
of the components in the event of a fire, flood, earthquake, explosion, or toxic release.
IECI65A(Secretariat)122 highly recommends FMEA, CCFA, and HAZOP for meeting very
high software safety integrity requirements. MIL-STD(882B's and MoD[00-56's primary
focus is HAZOP analysis.

MIL-STD882B and MoDI[00-56 require similar hazard analyses. However, MoD00-56
groups several hazard analysis processes into a single, system hazard analysis and uses
different terminology. In the concept phase of the system life cycle, a preliminary hazard
analysis is performed to assess the risk of the concept or system. A hazard analysis is then
performed on each subsystem to identify all components (hardware and software) whose
performance, performance degradation, functional failure, or inadvertent functioning
could result in a hazard. Other hazard analyses include system, operating and support,
and occupational health hazard analyses. Though the standards do not specify the timing
of either these hazard analyses or the subsystem hazard analysis, details of system design
may be needed before the analyses are performed. The system hazard analysis identifies
hazards and assesses the risk of the total system design, including the subsystem
interfaces. The operating and support hazard analysis identifies and evaluates hazards
resulting from the implementation of operations or tasks performed by humans. And
lastly, the occupational health hazard analysis identifies health hazards and recommends
engineering controls, equipment, and/or protective procedures to reduce the associated
risk to an acceptable level. These health hazards include toxic materials, noise, heat stress,
ionizing radiation, ventilation, and radiation barriers.

8.3.1 Software Specific Safety Analysis

MIL-STD882B and MoD00-56 have specific sections related to software system safety
hazard analyses. MoD00-56 specifies a single software functional hazard analysis while
MIL-STD 882B identifies six hazard and safety analyses for the software. Four of the six
MIL-STD(882B hazard analyses (software requirements, top-level design, detailed design,
and code-level software hazard analyses) use the deliverables from their associated tasks
in DoD2167A as the basis for performing their analyses.

In addition to the software-specific hazard and safety analysis, MIL-STD882B
recommends an extensive set of overall system hazard and safety analyses that can be
applied to hardware and/or software. However, MIL-STD(882B recommends applying
the software-specific section of the standard to large or complex software products. For
smaller-scale software products, the overall system hazard and safety analyses can be
modified to include software hazard analysis requirements.

9. Software Reliability Processes and Measurements

Reliability in general can be thought of from two different perspectives. The customer
may consider a system reliable if it has a high availability (high mean-time-to-failure),

17

whereas the software developer’s system designers may consider a system reliable if it
has a low failure rate (failures per thousand lines of code). Techniques for both
perspectives are included in this section. A further discussion in Section 9.1.1 describes
the differences.

Reliability analysis uses techniques, procedures that implement those techniques, and
estimation or prediction measurements throughout all phases of the software life cycle.
The techniques use current trends either to estimate system or software reliability at the
current point in time or to predict its value at a future time. A technique performed in one
phase of the software life cycle may determine what technique, if any, should be
performed in another phase. Some software reliability techniques are closely associated
with techniques for assessing overall system reliability (e.g., modeling fault trees and
categorizing failures). In those instances, we shall discuss the appropriate system
reliability technique.

Several standards and publications use the software development life cycle phases as a
base structure for discussing software reliability techniques. In Section 8 of this report,
these phases also provide a structure for estimating software reliability. Software
development standards and literature identify the software life cycle phases differently.
To avoid confusion, this report defines the software life cycle phases as (1) concept, (2)
requirements, (3) design, (4) implementation, (5) test, (6) installation and verification, (7)
operation and maintenance, and (8) retirement. Descriptions of these phases are found in
Section 3.1, Definitions. As software reliability does not apply in the retirement phase of
the software life cycle , we do not include it. Appendix C contains a table mapping the
various techniques and procedures in this section to the individual standards.

Several techniques can be applied to more than one software life cycle phase, and some
overlap multiple phases. Some techniques are complementary, and some may be
substituted for another technique. The strengths, weaknesses, and related measures of
each technique are discussed in the present section. Each measure is identified by an (I)
for indicator or a (P) for predictor.

Related measures or metrics discussed are from IEEE982.1, Standard Dictionary of
Measures to Produce Reliable Software, and from AFSCP[800-14, Software Quality
Indicators. AFSCP(800-14 identifies seven measures that are a subset of the 39 IEEE(982.1
measures. More than one measure may be appropriate for a specific technique. Some
measures can replace others, and some are best used to complement each other. Which
measures to apply may best be decided by the actual personnel using the technique. Not
all the measures listed may be appropriate to use or may be considered useful by some
software reliability and safety-related software experts. The Considerations, Training,
Experience, and References sections in IEEE982.2 should be carefully reviewed before
any of these measures are applied.

The IEEE(982.1 and its guide-to-use standard, IEEE982.2, include a description of each
measure’s use, the input parameters for the measure, an interpretation, problems to
consider in using the measure, the background needed to perform the measurement, an
example, the benefits of the measure, user experience, and references. AFSCP800-14 uses
a similar format that is modified for application in the U.S. Air Force environment.
Appendix D contains a brief description of each measure. The measures are grouped in
two categories—product and process—and nine subcategories: (1) errors, faults, and
failures counting; (2) mean-time to failure and failure rate; (3) reliability growth and
projection; (4) remaining faults estimation; (5) completeness and consistency; (6)
complexity; (7) management control; (8) coverage; and (9) risk, benefit, and cost

18

evaluation. Table 9.1 contains a list of these reliability measures. (Table 9.1 is reproduced
from IEEE982.2 with the permission of the IEEE.)

9.1 Concept Phase

9.1.1 Set Reliability Goals

Software reliability goals are established by the software development staff working
closely with the systems engineers and end-user representatives. In developing a software
product, the customer’s perspective on reliability must be considered when establishing
these goals. Usually, software reliability goals and their objectives are specified from the
software designer’s viewpoint (faults per thousand lines of delivered source code). Using
the customer's viewpoint (failures per thousand CPU hours) provides a better measure
for meeting the reliability goals (Musa and Everett, 1990). Goals should consider the
overall system objectives, system performance requirements, rate of demand on the
specific safety system, complexity of the system design, consequences of safety system
failure, testing limitations, the customer's requirements for the system, and in the case of
nuclear power generating systems, any regulatory requirements. Goals must be weighed
against their impact on the environment and human safety, their importance to the total
system performance, and the practical feasibility of achieving them. Reliability goals
should be included as an explicit part of the requirements specification. Software should
be evaluated according to its ability to meet the reliability goal's objectives; therefore, the
objectives must be testable.

The amount of reliability testing to be performed should be carefully considered because
testing takes time and increases costs (Everett, 1990). Planning for reliability goal testing
should be performed in the requirements phase, as suggested by Everett (1990).

Benefits: Establishing reliability goals during the concept phase focuses the development
team on those goals (Musa and Everett, 1990).

Deficiencies: Early in the software life cycle phase, it is sometimes difficult to obtain
enough information to specify meaningful reliability goals.

Interrelationship with other capabilities: Once the goals for reliability are determined,
procedures to achieve these goals and tests to verify the reliability must be established.

Addressed by: IEEE352, 577, and 982.2.
Related Metric: RELY-Required Software Reliability (I).

9.1.2 Identify and Categorize Failure Modes

Identifying and categorizing system failure modes are major tasks within a FMEA or a
HAZOP. This technique is applicable to an entire system. Separating software failure
modes from those of the entire system is difficult. Once the failure modes have been
listed, they can be categorized by their severity and probability of occurrence as they
relate to safety and reliability. Understanding how these concepts apply to the failure
categories helps identify the differences between safety and reliability.

In viewing reliability without considering safety, failure modes can be categorized by the

frequency with which they are expected to occur. Minimizing the frequency of failures
will increase reliability but may not improve safety because the failures that occur most

19

often may not be those that have the greatest impact on human life or on the
environment. Severity of consequences must be considered by the software developer
when categorizing failure modes. From a safety standpoint, failure modes can be
categorized for their contribution to hazardous situations. Identifying the consequences of
the failure can help in the categorization.

Benefits: Categorization of failure modes can determine the priority that should be given
to prevent failure. Once critical failure modes are identified, test procedures and other
reliability processes can be tailored to prevent the occurrence of the most risky failure
modes (in terms of safety) and /or the most frequent failure modes (in terms of reliability).

Deficiencies: The skills of the individuals performing each analysis will affect the
completeness and thoroughness of the application of this technique. Even when this task
is performed by persons highly qualified in determining the failure points, there is no
assurance the all possible failure modes have been identified.

20

Table 9.1. Measure classification matrix. Source: [19]. (1) AFSCP 800-14 measure.

Product measures Process measures
Errors, Mean time Reliability Remaining | Completeness Risk,
faults, to failure, growth and product and Management benefit, cost
Measures (experience) failures failure rate projection faults consistency Complexity control Coverage estimation
1. Fault density (1) .
2. Defect density (1) .
3. Cumulative failure profile U
4. Fault-days number . U
5. Functional or modular test coverage . . B
6. Cause and effect graphing . .
7. Requirements traceability . . .
8. Defect indices . .
9. Error distributions U
10. Software maturity index o o
11. Man-hours per major defect detected ° °
12. Number of conflicting requirements . . .
13. Number of entries/exits per module . .
14. Software science measures ° °
15. Graph-theoretic complexity for architecture .
16. Cyclomatic complexity . o
17. Minimal unit test case determination . .
18. Run reliability o
19. Design structure (1) .

20. Mean time to discover the next K faults

21. Software purity level

22. Estimated number of faults remaining

23. Requirements compliance

24. Test coverage (1)

25. Data or information flow complexity

26. Reliability growth function

27. Residual fault count

28. Failure analysis using elapsed time

29. Testing sufficiency (1)

30. Mean-time-to-failure

31. Failure rate

32. Software documentation and source listings (1)
33. RELY (required software reliability)

34. Software release readiness

35. Completeness (1)

36. Test accuracy

37. System performance reliability

38. Independent process reliability

39. Combined hardware/software system operational availability

22

Interrelationship with other capabilities: This categorized list can be used by any future software life
cycle process to focus on the most important aspects of safety and/or software reliability. Fault-tree
modeling, cause-consequence diagrams, system functional diagrams, and reliability block diagrams can
be used to categorize and list the failures.

Addressed by: IEEE352, 577 and P1228, MIL-STD882B, and MoDI[00-55 and 00-56.
Related Metrics: No metrics were found that apply to this technique.

9.1.3 Fault-tree Modeling

Fault-tree modeling uses logical, graphical tree-like structures to illustrate the system and to identify
failure dependencies and propagations. Fault-tree modeling relates component fault to system failures.
This modeling technique uses Boolean algebra to predict system reliability or availability. It also can be
applied to software reliability. Fault-tree modeling is frequently performed after a FMEA or CCFA to
diagram and communicate information developed during those analyses. Fault-tree modeling represents
the system in terms of events leading to failures. However, the model determines the probability of a
single event and thus cannot be used to analyze multiple events. The highest-level undesired event is
specified. The system failure logic is then traced down to the level that shows the lowest-level component
fault that can cause the event. Some computer tool packages are available to use with this modeling
technique.

Benefits: Fault trees force the software developer or systems analyst to actively identify the possible
failures and events showing dependencies, common-mode failures, and sequences of events. Fault trees
can identify critical aspects of system behavior. The modeling process also may show where redundant
hardware is needed. Fault-tree modeling allows the user to trace through several interconnected systems
to find the root causes of the top event.

Deficiencies: Fault trees are seldom produced with enough detail to discover subtle common modes, and
they do not handle multiple system states. Detailed fault trees may be unmanageably large, and
computer time can become excessive. Therefore the user must determine when and how to terminate the
analysis. Further, since a separate fault tree is required for each top event, the user must carefully define
the top event if the analysis is to be beneficial.

Interrelationship with other capabilities: Fault trees are useful after failure modes have been identified
and categorized, and they may uncover additional failure modes that have not been identified. The
logical failure paths and probabilities that fault-tree modeling produces also can be used in Monte Carlo
modeling (Section 9.2.3).

Addressed by: IEC65A(Secretariat)122, IEEE352 and 577, and MoD00-56.
Related Metric: Cause and Effect Graphing ().
9.1.4 Event-tree Analysis

Event-tree analysis builds a graphical model that indicates the sequence of events that develop after an
event has occurred. The consequences of primary and secondary events can then be evaluated for their
impact on the safety of the system. An event tree begins with a fault (a cause) and proceeds forward
through all of its consequences. Starting from an initiating event, a line is drawn to the first conditional
sequence. Branches labeled “yes” and “no” are used for alternative paths from this event to the next
condition. This procedure continues until all conditions from the initiating event have been drawn. The
event tree can be used to determine the probability of the consequences of the initiating event.

23

Benefits: Event-tree analysis has several major advantages. The tree is easy to draw and to understand
once the sequence of events has been established, and probabilities can be derived from the analysis.

Deficiencies: It is sometimes difficult to identify a complete sequence of conditions and to account for the
various failure modes. It is also difficult to take into account dependent failures, common equipment, and
common fault interactions. Another problem is that an event tree can become very large.

Interrelationship with other capabilities: The event tree differs from the fault tree in that the fault tree
starts with a failure (a result or consequence of an event) and works backward through all the causes to
determine the root cause, whereas the event tree starts with a failure and works forward to determine all
of the possible consequences. Event trees complement fault trees and are a subset of the cause-
consequence diagram.

Addressed by: IECI65A(Secretariat)122.
Related Metric: Cause and Effect Graphing (I).
9.1.5 Cause-consequence Diagram

The cause-consequence diagram combines fault-tree and event-tree analyses to produce a graph that
describes the conditions for propagation of an event. These diagrams are used to calculate the probability
of occurrence of critical consequences. The diagram is generated by starting from a critical event, then
tracing the cause of the event backward (fault-tree modeling) and the consequences forward (event-tree
analysis). Time delays are included. To simplify the diagram, logical symbols can be used for the event
propagation lines.

Benefits: Since the cause-consequence diagram is a combination of fault-tree and event-tree analysis, it
inherits the benefits of both those techniques. In addition, the cause-consequence diagram provides a
view of the cause of the failure and its consequences for individual components and for the entire
software product.

Deficiencies: Because this technique combines fault-tree modeling and event-tree analysis, it increases
the number of events that are modeled. This produces even larger—and possibly unmanageable—
diagrams.

Interrelationship with other capabilities: Cause-consequence diagrams are a combination of fault trees
and event trees.

Addressed by: IECI65A(Secretariat)122.
Related Metric: Cause and Effect Graphing (I).
9.1.6 Reliability Block Diagram

A reliability block diagram compares closely with a system functional diagram, illustrating the normal
functioning of the system and the interrelationship of events. These diagrams describe the system in
terms of events leading to success. First the system boundaries and initial conditions are defined. Then, if
a FMEA or functional diagram has been developed it can be used to define the blocks in the diagram.
Each block in the diagram represents a component of the system, and the components are grouped into
sets. Paths between components are serial if the failure of a single component in the set leads to the
failure of the system (Figure 9.1). If component A is successful, the system will remain operational and
component B will determine the success or failure of the system. If B is successful, component C will
determine the success of failure. If either A, B, or C fails, the system fails.

24

Figure 9.1. Single-failure reliability block diagram.

If redundant components are used, the paths are parallel, creating an n-out-of-m system logic structure,
where n = the number of redundant components that must be successful for the system not to fail and m
= the total number of components (Figure 9.2). The system remains operational if any two of the three
components are successful. This is described as a 2-out-of-3 system logic structure. For example, if
components A and B are successful but C is not, the system remains operational.

A B

B C

Figure 9.2. Two-out-of-three logic reliability block diagram.

Benefits: The logic of a reliability block diagram is relatively simple, and failure rates can be calculated
easily (Lawrence, 1991). Reliability block diagrams may indicate that redundant components must be
added to achieve the desired reliability.

Deficiencies: The reliability block diagram assumes that the failure of a component is statistically
independent and that the failure rate is constant.

Interrelationship with other capabilities: Reliability block diagrams are useful after failure modes have
been identified and categorized. They can be used in FMEAs. A fault tree identifies possible failures and
events leading to failures, whereas a reliability block diagram describes system events that lead to
success.

Addressed by: IECI65A(Secretariat)122 and IEEE(352 and 577.

Related Metric: Cause and Effect Graphing (I).

9.1.7 Probability Modeling

Probability formulas are used with truth tables, Venn diagrams, and Boolean algebra to estimate the
reliability or availability of a system. These simple formulas use the sum of the component probabilities
to calculate system-wide availability or reliability . Availability is calculated from the probability of

system success. The probability of success can be determined by using a reliability block diagram (Figure
9.2) to create a truth table (Table 9.1).

25

Table 9.1. Truth table for Figure 9.2.

A B C System Boolean term
0 0 0 0 ABC
0 0 1 0 ABC
0 1 0 0 A BC
0 1 1 1 A BC
1 0 0 0 ABC
1 0 1 1 ABC
1 1 0 1 ABC
1 1 1 1 ABC

*0 = failure; 1 = success.

Then the success probabilities are summed. This technique can be used to model software diversity in a
computer system, where A, B, and C are diverse software components. The probability modeling
equation for availability is

availability = P(A BC) + P(AB C) + P(ABC) + P(ABC)

where the success of component A is denoted by A and A denotes its complement, the failure of A.
Reliability is calculated by using the failure aspects of the model to create the probability of failure. Thus,
reliability = 1 — probability(failure). The probability modeling equation for reliability is

reliability = 1 — (P(ABC) + P(AB C) + P(ABC) + P(A BC)).
For a well-defined system, the number of ways to show failure is less than the number of success paths.
Thus, it is easier to calculate reliability using Boolean algebra for the probability of failure than to
calculate availability.
Benefits: Probability modeling is based on techniques previously applied, such as reliability block
diagrams or fault-trees. If these techniques have been used, performing the modeling techniques is
straightforward. The use of fault-trees leads naturally to Venn diagrams and Boolean algebra.
Deficiencies: If truth tables are used on large problems, the number of terms produced becomes
unmanageable, and the technique becomes cumbersome. Boolean techniques do not adequately handle

multiple states.

Interrelationship with other capabilities: Probability modeling uses fault trees and reliability block
diagrams to determine the elements in their probability equations.

Addressed by: IEC65A(Secretariat)122 and IEEE352 and 577.

Related Metric: Cause and Effect Graphing (I).

26

9.2 Requirements Analysis Phase

9.2.1 Operational Profile Analysis

An operational profile describes how a computer system will operate in the specified environment. It is
developed to reflect how the end user will use the product. System inputs and their frequency of
occurrence are identified from previous versions of the software, similar software products, and estimates
for new features. From this information, a profile of computer system usage can be developed. As an
example, a profile may show that during a nuclear power plant start-up, the plant’s nuclear steam supply
system instrumentation and control system receives two operator requests for data and one operator-
generated command per minute on an average. During a loss-of-coolant accident, the same system will
receive a maximum of fifteen requests for data and five operator-generated commands per minute. This
profile can be used to design user interface functions, input and output screens, and test cases. For
systems that are initiated by an operator, the sequence of inputs is considered a single run of the software
product. The operational profile is actually a set of relative frequencies of occurrence of the run, usually
expressed as fractions of the total set of runs (Musa, Iannino, and Okumoto, 1987). If the runs are
independent, it is fairly easy to determine the probabilities of occurrence. However, when runs depend
on one or more previous runs, determining the probabilities is more complicated.

Equivalence classes, sets of inputs that cause the system to enter the same state, can be generated from the
operational profile. Equivalence classes use a minimum of test data to increase the adequacy of software
testing. Input data are partitioned based on their equivalence relationship. Then test cases are developed
to cover each partition. Equivalence classes may be defined either from the specification or from the
internal structure of the software. IEC/65A(Secretariat)122 addresses the use of equivalence classes in an
operational profile. This technique also is discussed by Musa (1989), Musa, Iannino, and Okumoto (1987),
Everett (1990), and Musa and Everett (1990). For software with very high software safety integrity levels,
IECI65A (Secretariat)122 highly recommends the use of equivalence classes in testing.

Benefits: The profile can help increase productivity and reduce costs during the design and
implementation phase by helping to guide the focus of development resources (Musa and Everett, 1990).
The profile can be used to generate a user’s manual for the system. Information on frequency of use can
suggest simpler software designs. For example, a developer may find that a simple manual recovery
design, rather than a complex automated recovery approach, is adequate for an operating condition that
occurs infrequently (Everett, 1990).

Deficiencies: In nuclear reactor systems and similar safety-related systems, there may be many diverse
sets of inputs that cause the system to reach the same state. It may therefore be impractical to identify
input sequences and their probability of occurrence. The use of equivalence classes for testing may

minimize this deficiency.

Interrelationship with other capabilities: At this time, no relationships with other techniques have been
identified.

Addressed by: IEC65A(Secretariat)122.

Related Metrics: No metrics were found that apply to this technique.

9.2.2 Markov Modeling

Markov modeling is a mathematical tool used to calculate the reliability or availability of a system. The
Markov model uses the concept of the state of a system and transitions among its various states. A system

is in a particular state when it satisfies all conditions of that state; it passes from one state to another when
a particular event occurs. Such events are called transitions. For reliability modeling, each state represents

27

a distinct combination of working or failed modules or components; there is a probability for each
transition into a state and each transition out of a state.

A simple example is shown in Figure 9.2.2. Two identical modules having the same probability of failure
and repair times are used for redundancy. Repairs cannot occur simultaneously. State 0 exists when both
modules are working, State 1 when one module has failed with a failure rate of F and is being repaired
with a repair rate of R, and State 2 when both modules have failed and are in repair. Since repairs are not
performed on the two failed modules simultaneously, there is no transition out of State 2 into State 0.
Then the probability of transition from State 0 to State 1 is 2Fdt and the probability of returning to State 0
is Rdt. The probability of staying in State 0 is 1 — 2Fdt. The additional probabilities for the transitions are
shown in Figure 9.2.2. The Markov process uses these transition probabilities to determine a state
probability equation for entering or staying in a particular state. These equations can be mathematically
solved and reliability can then be estimated.

The two basic types of Markov model are chains and processes. The Markov chain uses matrix
multiplication in discrete time to determine the set of probabilities, whereas the Markov process uses
differential equations over continuous time. The Markov process is mainly used for estimating software
reliability. For the Markov process, the transition out of a state is independent of the transitions that
caused the state to be entered. When used to determine software reliability, this assumption is reasonable
because software failure analysis depends mainly on the faults remaining and the operational profile
(Musa, Iannino, and Okumoto, 1987). IECI65A(Secretariat)122 highly recommends this technique for
software with very high safety integrity requirements.

Benefits: Any state-tree-based model (event-tree, fault-tree, etc.) can be translated into a Markov model.
Markov models can handle complex systems that are difficult to model using fault trees, reliability block
diagrams, and probability models. Markov models also can handle redundant systems in which the level
of redundancy varies with time due to component failure or repair. A major benefit of Markov models is
that hardware components and software modules can be treated in the same model.

Deficiencies: A simple fault tree can produce a Markov model with tens of thousands of states. Personnel
performing this modeling must have sophisticated knowledge of mathematics.

Interrelationship with other capabilities: Markov modeling uses the results from fault-tree or reliability
block diagram analysis.

Addressed by: IECI65A(Secretariat)122 and IEEE(352 and 577.

Related Metrics: Independent Process Reliability (I), Combined Hardware and Software Operational
Availability (P).

28

P(0,1) = 2Fdt

State 1

. Module 1 - working

.Module 2 - failed
or

.Module 1 - failed

. Module 2 - working

State 0
.Module 1 - working
. Module 2 - working

P(1,0) = Rdt P(L2) = Fet

P(2,1) Rdt

State 2
. Module 1 - failed
. Module 2 - failed

Figure 9.2.2

9.2.3 Monte Carlo Modeling

Monte Carlo modeling uses a random-decision generator, such as a random number generator, to
determine the failure of hardware components or software modules. Using computer calculations, the
model randomly chooses a component or module to fail. A fault tree or other graphical form is used to
relate the success or failure of the system to the success or failure of its components. Thus, the mean time
to failure for the system can be determined from the known reliability of its components by conducting
repeated trial runs. For each run, the random failure of components is used to determine the success or
failure of the system. The average of the times to failure should converge to the mean time to failure if a
sufficiently large number of runs are completed. Monte Carlo modeling is frequently used with fault trees
to include parameters such as lognormal distribution of time to repair. Since safety probabilities are much
smaller than those for reliability, they are less likely to be chosen as a failure by the Monte Carlo random-
decision generator. Monte Carlo modeling therefore estimates reliability more accurately than safety.

Benefits: The Monte Carlo model can be applied to a complex system. Statistical variations in daily or

weekly model data can be handled with this model. The randomness of the Monte Carlo model may
choose combinations of failures that a human may overlook or may be biased against analyzing.

29

Deficiencies: A large number of computer runs, which may be expensive, are required to show
convergence of the mean time to failure. However, as hardware systems increase their computer power
and speed, this disadvantage may disappear.

Interrelationship with other capabilities: The Monte Carlo model can be used with fault-tree analysis.
Addressed by: IECI65A(Secretariat)122 and IEEE(352 and 577.

Related Metrics: Mean Time to Discover the Next K Faults (P), Failure Analysis Using Elapsed Time (P),
Mean Time to Failure (P).

9.2.4 Certifying Tools and Translators

This technique has an objective similar to the certification of reused software (discussed in Section 9.5.1).
The reliability of a software product is affected by any tool that produces its software components or by
the output of any other product that is then used as input to the new software components. Independent
organizations use domestic or international standards to certify a tool. Tools in all development activities
(specification, design, code, test, and validation) can be evaluated for certification. If a translator has small
deficiencies, the specific language constructs affected can be noted and those items avoided during
software development. IECI65A(Secretariat)122 states that immature translators must not be used for
safety-related software. The selection of tools and support software should consider the tool's costs,
benefits, performance, maturity, usability, interoperability, and maintenance.

Benefits: Level of confidence in a software product increases when tools that produce the software are
certified.

Deficiencies: The range of certified tools is limited. Currently, translators (compilers) are the only tools
that are regularly certified. The method of certification impacts the quality level of tool certification.

Interrelationship with other capabilities: At this time, no relationships with other techniques have been
determined.

Addressed by: IEC65A (Secretariat)122 and MoDI00-55.

Related Metrics: No metrics were found that apply to this technique.
9.3 Design Phase

9.3.1 Determine Factors That Influence Reliability

No standard addresses factors that influence reliability. Musa, Iannino, and Okumoto (1987) and Musa
and Everett (1990) discuss how to determine such factors, which they categorize as controllable and
uncontrollable. Controllable factors include design inspections, thoroughness of design inspections, and
time and resources devoted to testing. Uncontrollable factors include program size, volatility of
requirements, and average experience of development staff.

Benefits: Controllable factors can be changed to increase reliability. Awareness of uncontrollable factors
can help the developer minimize their impact on reliability.

Deficiencies: The standards and publications reviewed do not provide enough information to address
the deficiencies of this technique.

30

Interrelationship with other capabilities: The information resulting from the use of this technique will
identify strong and weak reliability processes and procedures in the software development.

Addressed by: No standards addressed this technique.
Related Metrics: No metrics were found that apply to this technique.
9.3.2 Reliability Time Line Model

No standard addresses the use of a reliability time-line model. However, Musa and Everett (1990) discuss
such a technique. A reliability time line can be constructed to indicate the trend of reliability growth over
the life of the software product. This time line can be used to evaluate progress toward achieving
reliability goals. If the expected progress is not being achieved, project personnel may need to be
reassigned, the development process may need to be restructured, or the software design may need to be
reworked.

Benefits: Graphing reliability values and monitoring progress toward reliability goals focuses the
development team on software reliability procedures and processes.

Deficiencies: The standards and publications reviewed do not provide enough information to address
the deficiencies of this technique.

Interrelationship with other capabilities: Graphs can be compared with the reliability growth model to
evaluate techniques and processes used during software development.

Addressed by: No standards addressed this technique.

Related Metrics: Cumulative Failure Profile (I), Reliability Growth Function (P), Failure Analysis Using
Elapsed Time (P).

9.3.3 Fault Detection and Diagnosis

Fault detection is the process of checking a system for erroneous states caused by a fault. Through the use
of diagnostic programs, the software checks itself and hardware for incorrect results. The diagnostic
programs can be run periodically or continuously as background processes. Diagnostic programs may
include duplicating a calculation two or more times, parity checks, and checksums. From a system
perspective, fault detection is based on diversity and on redundancy of hardware and software
components. Voting is used to decide the correctness of the redundant components. Fault detection
checks values and timing for faults that may be physical (e.g., temperature and voltage instruments),
logical (e.g., error-detecting codes), functional (e.g., assertions), or external (e.g., feasibility checks). Fault
detection techniques can identify “safe states” where the system is operating properly. As time
progresses, the software may detect a state that is not safe. The software can then return the system to the
previously known safe state, thus increasing the safety of the overall system. IECI65A(Secretariat)122
highly recommends this technique for software with very high safety integrity requirements.

Benefits: Small subsystems are identified during fault detection techniques. These smaller subsystems
allow a more detailed diagnosis of possible system faults.

Deficiencies: Significant amounts of automated fault detection and diagnosis can slow down the real-
time performance of a system and add to its complexity.

Interrelationship with other capabilities: The safety bag (Section 9.3.4) is a form of this technique.
Addressed by: IECI65A(Secretariat)122 and 880.

31

Related Metrics: No metrics were found that apply to this technique.
9.3.4 Safety Bag

In this technique, an external monitor, called a safety bag, is implemented on an independent computer
using a different specification. The primary function of the safety bag is to ensure that the main system
performs safe—but not necessarily correct—operations. The safety bag continually monitors the main
system to prevent it from entering an unsafe state. If a hazardous state does occur, the system is brought
back to a safe state by either the safety bag or the main system.

Benefits: Safety-bag software is developed from specifications that are different from those for the main
computer system, thus reducing the risk of common-mode failures. Safety-bag software is normally
simpler than the software in the main computer system, hence reducing the cost of development
compared with two-version diversity (Technical Committee 7, 1988).

Deficiencies: It is difficult to develop correct but dissimilar specifications for a safety bag and for the main
computer and also to avoid common design or implementation decisions. Since there is no fault masking,
the safety bag and the main computer must be operational to maintain their availability. Development
and implementation of two systems increases overall development and maintenance costs. There are
potential problems with information exchange between the two systems and with voting. There is no
protection against failures in the safety bag (Technical Committee 7, 1988).

Interrelationship with other capabilities: The safety bag is a form of diversity and is related to assertion
programming. It also is similar in some respects to the recovery block scheme (without the recovery).

Addressed by: IECI65A(Secretariat)122.
Related Metrics: No metrics were found that apply to this technique.
9.3.5 Sneak Circuit Analysis

A sneak circuit path analyzes defects for an unexpected path or logic flow in a system that may cause a
failure or an undesired result. A sneak circuit path may consist of hardware, software, operator actions,
or any combination of these items. Sneak circuits are latent conditions, inadvertently designed into the
system or coded into the software, that can cause a system to malfunction under certain conditions. The
analysis to detect a sneak circuit is based on the recognition of basic topological patterns in hardware or
software structure. The analysis uses a checklist of questions regarding the use of, and relationships
among, the basic topological components.

Benefits: Sneak circuit analysis can be applied to hardware, software, and the integrated system. It can be
applied to programs written in any language, and is directed toward finding system design flaws rather

than component failures (Technical Committee 7, 1988).

Deficiencies: This method is labor-intensive. If it is performed late in the development cycle, required
changes will be expensive to make (Technical Committee 7, 1988).

Interrelationship with other capabilities: It is complementary to FMEA and Fault-tree Analysis.
Addressed by: IECI65A(Secretariat)122.

Related Metrics: No metrics were found that apply to this technique.

32

9.3.6 Retry Fault Recovery

When a system using this technique detects a fault or error, it resets itself to its previous state and re-
executes the same code. There are three general categories of methods used to recover to a previous state
(Lawrence, 1991): (1) checkpointing, (2) audit trails, and (3) recovery cache. Checkpointing saves enough
information to reconstruct the last known correct system state in a disk file. Audit trails save all changes
to the system in a transaction log. A checkpoint also is performed. During system recovery, the
checkpoint is used to reset the system, and the transaction log is then used to bring the system forward to
its last safe state. This technique is used extensively in database management systems. Unlike the
checkpointing method, the recovery cache incrementally copies only those portions of the system state
that have changed. The system can be restored from this information. Transaction logs also can be used
with recovery cache to restore the system to its most current safe state. For real-time components, the
software must be retried within its time-critical period. Retry techniques are used frequently in
communications systems. IECI65A(Secretariat)122 highly recommends this technique for software with
very high safety integrity requirements.

Benefits: Usually this method is relatively inexpensive to implement. Under normal, correct, operating
conditions, minimal software overhead is incurred (Technical Committee 7, 1988).

Deficiencies: Most real-time systems cannot accommodate the loss of data and the time delay incurred in
using this technique. Therefore this method is mainly used in handling communication error recovery
(Technical Committee 7, 1988) and in database systems.

Interrelationship with other capabilities: This method normally uses software time-out checks or
watchdog timers to trigger retry attempts.

Addressed by: IECI65A(Secretariat)122.
Related Metrics: No metrics were found that apply to this technique.
9.3.7 n-Version Programming

In n-version programming, multiple development teams use the same software requirements
specification. Such programming is an approach to software diversity, and it is used to improve software
reliability. Independent teams produce a specified number n of software products called versions. The
number of software versions is usually three or a greater odd number (Lawrence, 1991). However, for
systems that have a safe state, two-version diversity can be used with a bias toward the safe state
(Technical Committee 7, 1988). All n-versions of the software product are part of the software system.
When possible, the software versions use different programming languages and algorithms. By using
different programming languages and thus different compilers, it is possible to eliminate compiler errors
and unsafe language constructs that may cause common-model failures.

If the various versions produce different outputs, voting is used to select the preferred answer. Different
voting strategies can be used, depending on the application requirements. If the system has a safe state,
then it is feasible to demand complete agreement of all n versions; otherwise, a fail-safe output value is
used. For simple trip systems, the vote can be biased in the safe direction. In this case, the safe action
would be to trip if either version demanded a trip. This approach typically uses only 2 versions (n = 2).
For systems with no safe state, majority voting strategies are employed. For cases where there is no
collective agreement, probabilistic approaches can be used to maximize the chance of selecting the correct
value.

Benefits: If the software faults produced by one software developer are independent from those of
another developer, n versions of the software product are unlikely to have the same faults; thus, a
developer can reduce the common-mode failures that result from embedded faults in replicated modules
(Leveson et al., 1990).

33

Deficiencies: The cost to implement n-version software can be n times greater than the cost to develop a
single product. Because all teams use the same software specifications, errors in the specifications may
cause similar faults in some or all the versions. IECI65A(Secretariat)122 and experts agree that for this
reason, independence among the n versions cannot be expected. Software diversity is difficult to
implement and can introduce complex recovery problems into the system. Also, the different software
products must have additional functionality to synchronize the various versions and to prevent serious
errors from causing the computer’s operating system to fail. The recovery of systems using n-version
programming is a research topic at this time.

Interrelationship with other capabilities: The safety bag is related to this technique, as are other
methods of design diversity. Components proven safe and reliable by the use of formal methods or their
operational usage may reduce the need for diversity in systems. As an example, three different sorting
algorithms are not needed for diversity if one sorting algorithm has the desired properties and has been
shown to be correct.

Addressed by: IECI65A(Secretariat)122.
Related Metrics: No metrics were found that apply to this technique.
9.3.8 Recovery Block Programming

Recovery block programming can be considered another approach that uses software diversity to achieve
a fault-tolerant system. Several software modules (usually four or more) are implemented independently,
each intended to perform the same function. The first or primary software module is executed first. The
software then performs self-checking to verify the correctness of the primary module's results. If the self-
checking tests are passed, the system proceeds. If not, the other software modules (referred to as first,
second, third, etc.) are executed one at a time until one module passes the self-checking tests.

Since it may be necessary to undo the effects of a software component, this technique is applicable only
where side effects of the component can be reversed.

Benefits: This technique provides a form of diversity at the program, procedure, or module level.
Deficiencies: The acceptance test is the critical aspect of this technique. The acceptance test can become as
complex as the source code algorithm that it is verifying. Reversing side effects may require special

hardware (Technical Committee 7, 1988).

Interrelationship with other capabilities: This technique provides software diversity similar to the safety
bag and n-version programming techniques.

Addressed by: IECI65A(Secretariat)122.

Related Metrics: No metrics were found that apply to this technique.

9.3.9 Design Metrics

Metrics evaluate structural properties of the software and relate that information to reliability or
complexity. Software tools are required to evaluate the measures in order to analyze the source code. The
measures can include (1) the complexity of program control, (2) the number of ways a module can be

initiated, (3) the number of entries and exits per module, and (4) the program length (established by
counting the number of operands and operators).

34

Benefits: Static source-code metrics are easy to obtain by using readily available commercial software
tools. There is some correlation between complexity (measured in terms of path complexity) of a program
module and its maintainability and testability.

Deficiencies: Most accepted metrics are applied to sequential, non-concurrent programs. Most real-time
systems are inherently concurrent.

Interrelationship with other capabilities: Metrics may be useful in deciding which program modules to
test more heavily or to replace.

Addressed by: IECI65A(Secretariat)122.
Related Metrics: Number of Entries/Exits per Module (I).
9.3.10 Petri Nets

Petri nets are used to analyze a system'’s safety and operational requirements. A Petri net is a graph-
theory model that expresses concurrency and asynchronous behavior as information or control flows.
Petri nets can be extended to include timing and data-flow features. However, classical Petri nets include
only control-flow features. Petri nets are composed of places and transitions. Places are marked or
unmarked. Transitions are enabled when all the input places are marked. Once a transition is enabled, it
is permitted to “fire,” or execute. Once a transition is executed, the inputs are unmarked, and the outputs
of the transition are marked.

Benefits: Petri Nets are easy to understand and can provide a thorough analysis of small systems. The
model is potentially executable, a feature that can be used to validate the adequacy of the system. Some
classes of faults can be modeled together with their impact on safety (e.g., whether a hazardous state can
be reached). Petri nets can provide guidance for system modifications to tolerate faults that are
discovered (Technical Committee 7, 1988).

Deficiencies: Except for very simple Petri nets, the properties of the whole system are not obvious from a
graph's appearance. Analytic methods work well on small networks or on small parts of large networks,
but are computationally difficult to manage for large systems. Only a small proportion of the overall set
of states can be tested; therefore the direct execution of a program has a limited capacity to demonstrate
safety.

Interrelationship with other capabilities: Temporal logic, calculus of communicating systems, and
communicating sequential processes can be used as alternatives to Petri nets (Technical Committee 7,
1988).

Addressed by: IECI65A(Secretariat)122.
Related Metrics: No metrics were found that apply to this technique.

9.4 Implementation Phase

The standards and literature reviewed for this report did not recommend any specific software reliability
techniques for the implemenation phase of the life cycle. However, there are several good and practical
techniques, such as the use of coding standards, that can improve software quality. Many standards, such
as IEC880 and MoD00-55, present guidelines or requirements for coding standards. Software unit testing
performed immediately after the code module has been implemented can be viewed as an
implementation phase technique. In this report, software unit testing is described in Section 9.5.

35

9.5 Test Phase

9.5.1 Certifying Acquired or Reused Software Reliability

MoD00-55 requires that any existing library or other software developed outside the software project
conform to the requirements of MoDI00-55 and MoD00-56. IEEEP1228 does not place as stringent
restrictions on acquired and reused software, but does require that certification of the previously
developed and purchased software be verified to conform to published specifications. MIL-STD882B
requires that acquired and reused software be subjected to the same hazard analysis as newly developed
components. Both IEEEP1228 and MIL-STD(882B require that acquired and reused software be tested
with newly developed safety-related components. Verification of acquired or reused software can include
formal specification, formal design, static source code analysis, and dynamic testing. The technique is
further discussed by Everett (1990) and Musa and Everett (1990). Reliability calculations on a system
must consider the reliability of all its software. This includes any reused software components or
modules, operating systems, communication interface software, and software obtained from outside
sources. The software industry is increasingly reusing software developed for one product in new
products. Industry experts believe that reused software is more reliable because it has a wide user base,
which uncovers more hidden faults. Even so, the reliability of reused software may not be sufficient to
satisfy the reliability goals of the new product (Everett, 1990). Confidence in reliability can be increased
by performing tests based on the operational profile of the new product (Musa and Everett, 1990)

Benefits: Reusing software components can reduce development and maintenance costs. New products
that embody reused software components are in general more trustworthy.

Deficiencies: A software component reused several times in the same or related systems entails a risk of
common-mode failure, as all such components have identical faults.

Interrelationship with other capabilities: The operational profile can be used to determine tests for
verifying acquired and reused software.

Addressed by: IEEEP1228 and MoDI00-55.
Related Metrics: No metrics were found that apply to this technique.
9.5.2 Reliability Growth Modeling

IEC(1014 is the only standard that directly addresses reliability growth modeling. This technique also is a
topic in many publications, such as Everett (1990), Lawrence (1991), and Musa, Ianinno, and Okumoto
(1988). Most software products are changed during their operation and maintenance phase to correct
faults and to extend or add functionality. After a software component has been modified or developed, it
enters a testing phase for a specified time. Failures will occur during this period, and software reliability
can be calculated from various measures such as number of failures and execution time to failure.
Software reliability is then plotted over time to determine any trends. The software is modified to correct
the failures and is tested again until the desired reliability objective is achieved.

Reliability growth modeling is widely used in industry to determine the date of product release for both
new and revised software. IEC1014 recommends that mathematical modeling should start only after a
statistically significant number of failures has occurred. Several mathematical models have been
developed. Reliability growth models are usually based either on execution time or calendar time. It is
generally accepted by software reliability experts that execution-time models are superior to calendar-
time models (Musa, Ianinno, and Okumoto, 1988). Jelinski and Moranda developed the first model in
1972, since revised by Shooman and Musa. Other reliability growth models are known as Bayesian,
Jelinski and Moranda, Littlewood, Bayesian-Littlewood, Littlewood and Verrall, Keiller and Littlewood,
Weibull order statistics, Duane, Goel-Okumoto, Littlewood NHPP, and Schick-Wolverton. Experts

36

disagree as to the relative usefulness of these models in safety-related systems such as those used in
nuclear power generating stations.

Benefits: Reliability growth modeling is compatible with the procedures used by software developers
during the test phase. A variation of this modeling technique has been used by software developers for
many years. Reliability growth models can be used to form an opinion on a software product's reliability.
Therefore they can assist project managers in their decision to proceed to the next development stage
(Technical Committee 7, 1988).

Deficiencies: If this is the only technique used to measure software reliability, the costs to achieve the
desired reliability late in the software life cycle may be high. Also, software developers may release a
product before its performance reaches the desired reliability goal in order to stay within budget and to
maintain the schedule. This technique is based on measuring the number of failures caused by software
faults. It does not consider impact on safety. The sheer diversity of the various software reliability growth
models tends to reduce the user's confidence in any of them (Technical Committee 7, 1988). All of these
models use assumptions (faults are independent, test samples are random, and corrections introduce no
additional faults) that may not be realistic in a typical software development environment.

Interrelationship with other capabilities: The output from a reliability model graph can be compared
with the reliability time line. Reliability tests can be performed with relative frequencies that match the
operational profile.

Addressed by: IEC[1014.

Related Metrics: Fault density (I), Cumulative Failure Profile (I), Defect Indices (I), Error Distributions (I),
Software Maturity Index (I), Software Purity Level (P), Estimated Number of Faults Remaining (P),
Reliability Growth Function (P), Residual Fault Count (P), Failure Analysis Using Elapsed Time (P), Mean
Time to Failure, Failure Rate (P), Software Release Readiness (I), Test Accuracy (P).

9.5.3 Software Testing

Testing is the process of executing a software product, or portion thereof, to detect its faults. Since testing
uncovers a software product's faults, corrections should improve the reliability and thus the availability
of the system. However, testing alone seldom adds sufficient reliability to a software product. Reliable
software requires good processes throughout all its life cycle phases.

While most standards approach software reliability through quality- enhancing activities in each life cycle
phase, one standard, IEC[1014, focuses principally on software testing. IEC[1014 states that reliability
measures of both hardware and software can be obtained only through observation, monitoring, and
recording of failures. Therefore, from IEC(1014's perspective, the degree to which reliability is improved
is determined by the ability of the tests to expose weaknesses. Testing should therefore be as
comprehensive as possible to include all peculiar and unforeseen conditions or combinations of
conditions that may occur. Testing to this degree may be impractical. However, an operational profile
(Section 9.2.1) uses a minimal number of cases to increase the adequacy of testing .

In practice, software module and system testing is the primary method used to determine reliability.
Types of testing include unit or module, software integration, functional, regression, system, acceptance,
and installation.

These testing types can be categorized by the amount of knowledge each requires about the internal
structure of the software product or component being tested. White-box testing, sometimes referred to as
glass-box testing, requires a high level of knowledge, whereas black-box testing requires no knowledge.
Software integration testing forms the bridge between white- and black-box testing .

37

In the following section the various testing techniques are grouped under (1) unit or module testing, (2)
functional testing, (3) software integration testing, and (4) system testing. The category of testing (white
or black box) is noted in parentheses following the title of each subsectrion. The remaining three
categories of testing—regression, acceptance, and installation—are discussed under the appropriate life
cycle phase. Several standards address testing in general and as a method of improving the quality of the
delivered software. These include ASQC Q93, FIPS 101, and IEEE0829 and 1008.

9.5.3.1 Unit or Module Testing

Unit testing is applied to a separately testable software unit or group of related units. Test cases that
exercise specific aspects of a single software unit or module are executed. These test cases are chosen to
include a large fraction of input elements. Various levels of testing are performed on the basis of the
confidence level needed for the software product. Unit testing, sometimes called white-box testing,
generally uses a white-box method. However, individual units or modules can be tested for conformance
to their specific functional task. As this testing requires little or no knowledge of the internal code
structure, it is a black-box method. Both types of unit testing are discussed in this section.

9.5.3.1.1 Structural Unit Testing (White-Box)

Structural testing is a unit or module test that uses the white-box method. Coding structures (statements,
branches, compound conditions, linear code sequence and jump, and data flow), subroutine calling
structure, and all possible paths in the module are executed in tests, depending on the level of testing
required. There are three types of structural testing: (1) basis, (2) all-paths, and (3) loop testing. Each of
these is briefly described in the following paragraphs. IEC65A(Secretariat)122 highly recommends
structural testing for software with very high safety integrity requirements.

Basis path testing is the simplest white-box approach to exercising the internal paths of a software
module. A flow graph of the software program control is developed to show all paths through the
software module. Graphical representations of the programing constructs if, while, until, and case are
used to develop a pictorial view of the module control. The flow graph consists of nodes and edges. Flow
graph nodes are one or more procedural statements, and edges are the control flow from one node to
another. Cyclomatic complexity is used to determine the maximum number of test cases needed to ensure
that each statement is executed once. The set of linearly independent paths can then be determined and
test cases developed to execute each path in the basis set.

All-path testing is the most complex of the unit or module tests. It exercises every path from the initial
entry to the final exit in a software module. All-path testing can require an overwhelming amount of test
cases. For example, a simple 100-line Pascal program with a single loop executing at most 20 times and
having five decision points within four levels may have 100 trillion paths (Pressman, 1987).

Loop testing focuses on the validity of the loop constructs. It can be used in addition to basis testing to
uncover initialization errors, index or increment errors, and boundary errors at the loop limits. For simple
loops, tests should be developed that skip the loop entirely, make only a single pass through the loop,
and then make two passes through the loop. For nested loops, test cases should start at the innermost
loop and set all other loops to their minimum values. Simple loop tests are then done on the innermost
loop while the other loops are at their minimum values. The innermost loop should then be tested with
out-of-range values. Additional test cases are derived by applying this procedure to the next innermost
loop and continuing until all loops have been tested.

Benefits: Structural testing is useful in discovering design and implementation flaws. Generation of test
cases can be automated. Structural testing generally has the highest error yield of all testing techniques
(Humphrey, 1989). Properly executed unit tests can detect as much as 70 percent of the defects in a
module (Thayer, Lipow, and Nelson, 1978).

38

Deficiencies: Structural unit or module testing requires knowledge of a software component's structure.
Therefore this testing is generally performed by the developers of that software component. This practice
can introduce testing bias. Even if automated tools are used, this technique may require an unacceptable
amount of testing time for high-confidence- level software such as that used in nuclear power generating
stations.

Interrelationship with other capabilities: This technique should be used to complement functional
requirements testing.

Addressed by: IECI[880 and 65A(Secretariat)122, MIL-STD882B, and MoD(00-55.

Related Metrics: Functional or Modular Test Coverage (I), Minimal Unit Test Case Determination (I),
Cyclomatic complexity (I), Test Coverage (I).

9.5.3.1.2 Functional Unit Testing (Black-Box)

In functional unit testing, individual units or modules can be tested for conformance to their specific
functional task. As this procedure requires little or no knowledge of the internal code structure, it is a
black-box method. An example is a single module that transforms data from a text file into a formatted
report. Another example is a module that uses multiple input values and a mathematical algorithm to
produce a single output term. In either case, no specific knowledge of the internal structure of the module
is needed. The module can be developed by a programmer and then tested by an independent tester
whose only information is the set of inputs to and expected outputs from the module. However, some
knowledge of the code's modular structure is needed in determining which code module performs the
functional task being tested.

Benefits: Functional tasks can be tested on the smallest code unit, thus allowing for simple detection of
software faults. Functional unit testing can uncover many software faults prior to functional requirements
testing, which is applied at a higher level of abstraction.

Deficiencies: Because this testing technique is usually applied to a single code module, the development
programmer is most likely to perform the functional unit test. This increases the risk of bias in the testing
process, thus decreasing the effectiveness of the test to uncover software faults.

Interrelationship with other capabilities: Some functional requirements are not explicitly stated in
sufficient detail for mapping directly to a single code module. Therefore functional requirements testing
should be performed to complement functional unit testing.

Addressed by: IECI65A(Secretariat)122.

Related Metrics: Functional or Modular Test Coverage (I), Test Coverage (I).

9.5.3.1.3 Mutation Testing (White-Box)

Mutation testing is a white-box method performed on individual modules of a software product. It is
commonly called error seeding. It can be used in other testing areas such as integration testing. Prior to
mutation testing, a software developer purposely inserts errors in source-code modules. This is known as
seeding. The source code is then tested. All seeded errors should be found. If only some are found, the

test cases are not adequate. The number of remaining real errors can be estimated by the equation

number of seeded errors found number of real errors found

total number of seeded errors total number of real errors

Benefits: Error seeding determines the effectiveness of the testing strategy
39

Deficiencies: This technique assumes that seeded errors and real errors are similarly distributed in the
software product.

Interrelationship with other capabilities: This technique can be compared with other methods used to
measure the effectiveness of testing or with methods such as reliability growth models that determine
when the testing phase is completed.

Addressed by: IECI65A(Secretariat)122.
Related Metrics: Estimated Number of Faults Remaining (by Seeding) (P), Test Accuracy (P).
9.5.3.2 Functional Testing

Functional testing focuses on software functional requirements. Functional testing attempts to uncover
software faults that include (1) incorrect or missing functions, (2) interface errors, (3) data structure errors,
(4) external database access errors, (5) performance errors, and (6) initialization and termination errors.
Explicitly stated requirements are necessary for developing complete test cases. Test cases can be
generated from equivalence classes and cause-consequence diagrams. Test cases should be selected so
that all desired aspects of the specifications are exercised. Test cases also should be selected with the
intention of finding software program faults. IEC/65A(Secretariat)122 highly recommends this technique
for software with very high safety integrity requirements.

The major functional testing technique is functional specification testing. However, other techniques can
be used for functional testing. A brief description of each of these techniques follows. All functional
testing techniques—functional specification, stress, boundary value, process simulation, and equivalence
class—are black-box methods.

9.5.3.2.1 Functional Specification Testing (Black-Box)

Functional specification testing is a black-box method that exercises specified functional requirements of
the software. The goal of functional specification testing is to determine whether there are any program
faults in meeting particular aspects of the software or system specifications. Test cases are generated from
the software and system specifications. These test cases can therefore be created prior to code
implementation. Functional specification testing differs from functional unit testing in that no knowledge
of a software product’s modular structure is needed to perform the tests, which may execute multiple
code modules.

Benefits: Since little knowledge of the internal structure of the software is needed, independent
personnel can perform these tests. Thus a biased developer does not influence the results. As software is
tested in its completed form, any reused or off-the-shelf software also can be tested.

Deficiencies: If this is the only technique used to increase software reliability, the costs to achieve the
desired reliability late in the software life cycle may be high. It is realistic to develop test cases that cover
only a small portion of possible test conditions. Functional specification testing detects nonconformance
with software and system specifications; it does not prove correctness or identify unintended functions
(Technical Committee 7, 1988).

Interrelationship with other capabilities: This technique should be used to complement unit testing
techniques.

Addressed by: IECI880 and (Secretariat)122 and MoD00-55.
Related Metrics: Functional or Modular Test Coverage (I), Test Coverage (I).

40

9.5.3.2.2 Stress Testing (Black-Box)

Stress testing is a functional technique that uses the black-box method. The basic idea is to determine
system degradation and failure modes. Stress testing places an exceptionally high workload on the
system to verify that it will function easily under the expected workload and to determine system failure
modes. Test cases are developed to stress the system operations. Changes in the system load can be tested
and evaluated for possible failures. IECI65A(Secretariat)122 highly recommends this technique for
software with very high safety integrity requirements. Stress testing is primarily a system test function
but can be used for software by designing test cases that emphasize software functions. Polling and
demand functions are tested by increasing the number of input changes per time unit over the expected
normal frequency. For database functions, the number of interactions with the database and its size are
increased. All applicable input parameters should be tested at their boundary conditions (highest and
lowest possible values) at the same time.

Stress testing also includes simulation of abnormal but realistic operating conditions that place an
extraordinary workload upon the system. One such condition might be an event in the process being
controlled that generates a large number of rapid-order alarms that require the system to initiate many
actions over a very short period of time. Another form of stress testing, sensitivity testing, attempts to
find singularities in various computational algorithms. In this instance, the data values that caused the
singularities are within the expected range of values.

Benefits: System failures modes and performance degradation modes are determined before real-life
occurrence of critical events.

Deficiencies: Exhaustive stress testing is usually not practical. It requires the knowledge of a process
engineer who can anticipate and develop realistic abnormal-event scenarios. These scenarios must be
simulated, a potentially costly process. In addition, there is no method to ensure that all abnormal event
scenarios have been identified and tested.

Interrelationship with other capabilities: The system failures and the software faults that produced
these failures can be measured and included in the various fault and failure count and tracking
techniques.

Addressed by: DoD2167A, IECI65A(Secretariat)122 and 1014, IEEEP1228, and MIL-STD(882B.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Residual Fault
Count (P), Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (P), Test
Accuracy (P).

9.5.3.2.3 Boundary-Value Testing (Black-Box)

Boundary-value testing is a functional testing technique that uses the black-box method. Boundary-value
testing of individual software components or entire software systems is an accepted technique in the
software industry. Test cases using minimum, maximum, minimum - 1, and maximum + 1 input range
values are developed and executed. Other input values that would generate division by zero and inputs
of blanks for character data and null values also should be tested. Test cases that use extreme values for
input parameters usually produce output parameters with extreme boundary values. If not, additional
test cases are needed to force the output parameters to their extremes. IECI65A(Secretariat)122 highly
recommends this technique for software with very high safety integrity requirements.

Benefits: The method checks that the boundaries of the specification input domain coincide with the
boundaries of the final program input domain.

41

Deficiencies: This technique detects software faults and system failures after a software component has
been developed, although the entire software product may not be completed. Modifications to correct
faults and improve reliability are more costly in this life cycle phase than in earlier phases. Also, it is
probably not possible to exhaustively check all boundary conditions.

Interrelationship with other capabilities: As with stress testing, system failures and software faults that
produced these failures can be measured and included in the various fault and failure-count and tracking
techniques. This technique is a form of specification-based testing.

Addressed by: IECI880 and 65A(Secretariat)122 and MoDI(00-55.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Failure Rate (P),
Test Accuracy (P).

9.5.3.2.4 Process Simulation Testing (Black-Box)

The goal of process simulation is to test software functions and their interfaces with outside components
without affecting the real environment. This is a black-box method. A test system, which also can include
hardware, is created to duplicate the real environment. The test system simulates the actual input and
output for the real system. Any operator manual entry also is simulated.

Benefits: This technique generates a wide range of operational scenarios for which the system is
evaluated, including scenarios that are too dangerous or impossible to reproduce in the actual operating
environment.

Deficiencies: As process simulation is very expensive, the correctness of the simulator and the accuracy
of the simulations must be considered.

Interrelationship with other capabilities: Stress testing requires some level of process simulation.
Addressed by: IEC65A(Secretariat)122 and MoDI00-55.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Run Reliability
(P), Software Purity Level (P), Test Coverage (I), Residual Fault Count (P), Testing Sufficiency (P), Mean
Time to Failure (P), Failure Rate (P), Test Accuracy (P).

9.5.3.2.5 Equivalence-Class Testing (Black-Box)

Equivalence-class testing is a functional test that uses the black-box method. Many references do not
consider equivalence-class testing a separate technique but rather a method for determining a subset of
test cases. It is included here as a separate test technique because of its importance in determining test
cases for performing functional testing. Large safety-related systems have an enormous numbers of
inputs. Testing each of these inputs is impractical. It can therefore be very beneficial to divide the input
domain into classes of data and then to use a sampling of inputs based on these classes of data to create
test cases. Guidelines are used to establish the equivalence classes. Guidelines may include, for example,
the following: (1) for an input condition specifying a range of values, one valid and two invalid inputs
should be defined, (2) for a specific value, one valid and two invalid inputs should be defined, (3) for an
input condition specifying a single member of a set, one valid and one invalid input should be defined,
and (4) for a Boolean input condition, both valid and invalid Boolean input values should be used in
defining test cases.

Benefits: As with functional specification testing, little knowledge of the internal structure of the
software is needed; therefore independent personnel can perform these tests.

42

Deficiencies: As equivalence-class testing only uses a sampling of input values, not all input values are
tested. This procedure can leave a software fault undetected.

Interrelationship with other capabilities: Equivalence-class testing is similar to functional requirements
testing. This technique should be used to complement unit testing techniques. The operational profile can
assist in determining the equivalence-class test cases.

Addressed by: IECI65A(Secretariat)122.
Related Metrics: Functional or Modular Test Coverage (I), Test Coverage (I).
9.5.3.3 Software Integration Testing

Software integration testing is a systematic technique for constructing a software product and uncovering
module interface faults. Software modules that have been unit-tested are combined in various methods
and tested as a single functioning unit. Modules can be either be included one at a time, as with bottom-

up and top-down approaches, or all modules can be tested at one time, as in the big-bang approach.
9.5.3.3.1 Bottom-up Testing (White-Box and Black-Box)

Bottom-up testing merges and tests software modules from bottom to top. Only modules that do not call
another module (called terminal modules) are unit-tested in isolation. The terminal module and the
module that called it are merged and tested as a unit. This process is repeated until the top -level module
is integrated and tested. Bottom-up testing emphasizes module functionality and performance. Since the
upper-level module is not tested, a module driver must be created to supply input parameters to the
tested modules.

Benefits: No test stubs are needed, and thus no time is required to implement the stubs. Since the lowest-
level software modules—which usually contain the most critical functions—are tested first, their faults
are found early.

Deficiencies: Test drivers are required to initiate lower-level code modules. Their implementation
increases the testing time. In a large software product, many modules must be tested and integrated
before a functioning product is available.

Interrelationship with other capabilities: Bottom-up testing uses the unit testing technique for terminal
modules. Bottom-up testing is the reverse of top-down testing.

Addressed by: No standard directly addressed the use of this technique.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Minimal Unit
Test Case Determination (I), Software Purity Level (P), Test Coverage (I), Residual Fault Count (P),
Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (P).

9.5.3.3.2 Top-down Testing (White-Box and Black-Box)

In top-down testing, a software program is merged and tested from the top code module to the lowest
terminal modules. Only the top module is tested in isolation. Modules directly called by this module are
then merged one by one into the testing process. This process is repeated until the last terminal module
has been included and tested. Since only the top module is unit tested, emphasis is on module interfaces.
When a module calls a lower-level module that has not been integrated into the testing process, a stub
module is used to simulate the output functions of the missing module. A variation of standard top-down
testing is modified top-down testing. This technique requires each module to be unit tested in isolation
before it is integrated into the standard top-down process.

43

Benefits: No test drivers are needed. For control systems this is more advantageous, since most drivers
are used for interrupt handling, memory allocation, and input and output handling, procedures that can
be complex to implement. Interface errors are discovered early in the testing phase. A basic prototype is
available after a few modules have been merged and tested.

Deficiencies: The stub module is rarely as simple as a return to the previous module; therefore
implementing the stub may be difficult and increase the testing time. Static, wired-in values are typically
used for the module’s output parameters, leaving the module being tested correct only for that set of
output values. Modules are rarely tested thoroughly as soon as they have been integrated into the testing
process (Myers, 1976). Since the upper modules of a software system are tested before their lower level
modules, they can be implemented before the entire design of the system has been completed. If this
occurs, additional premature design errors can be introduced into a software product.

Interrelationship with other capabilities: Top-down testing is the reverse of bottom-up testing. Unit
testing is used for the top module in the standard top-down process and for all modules in the modified
top-down process.

Addressed by: No standard directly addressed the use of this technique.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Minimal Unit
Test Case Determination (I), Software Purity Level (P), Test Coverage (I), Residual Fault Count (P),
Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (P).

9.5.3.3 3 Big-Bang Testing (White-Box and Black-Box)

In big-bang testing, each module is unit-tested in isolation. All modules are then merged simultaneously
and tested as a single software unit. This is a simple approach and the most common. Unfortunately, big-
bang testing has more disadvantages and fewer advantages than other tests. For small and well-designed
software products, the big-bang approach is feasible. In large, complex, safety-related systems, however,
this approach can be very dangerous.

Benefits: Module stubs and drivers are not required.

Deficiencies: As modules are not integrated until late in the test phase, interface faults may remain
undetected for a long time. This may increase the difficulty of software corrections and the costs of
removing faults. Since all modules are merged simultaneously, it can be very difficult to determinine the

exact module where the fault resides.

Interrelationship with other capabilities: The big-bang testing technique uses unit testing for every
module of the software product.

Addressed by: No standard directly addressed the use of this technique.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Minimal Unit
Test Case Determination (I), Software Purity Level (P), Test Coverage (I), Residual Fault Count (P),
Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (P).

9.5.3.3.4 Sandwich Testing (White-Box and Black-Box)

Sandwich testing uses bottom-up and top-down testing simultaneously. It merges the code modules from

the top and the bottom so that they eventually meet the middle. This approach is reasonable for
integrating software in a large software product. A modified sandwich-testing approach performs

44

isolated unit testing on the higher-level code modules before they are used in the top-down testing
scheme.

Benefits: Sandwich testing retains most of the benefits of bottom-up and top-down testing. Some, but not
as many, module drivers and stubs are neededas in bottom-up and top-down testing. As in the top-
down approach, the module interfaces are tested early in the test phase, and a basic prototype is
available. The functional specifications of the software product also are tested early, since they are usually
implemented in the lower-level modules.

Deficiencies: Code modules near the boundaries of the sandwich layer may not be thoroughly tested
(Myers, 1976).

Interrelationship with other capabilities: The sandwich testing approaches uses the bottom-up and top-
down testing processes.

Addressed by: No standard directly addressed the use of this technique.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Minimal Unit
Test Case Determination (I), Software Purity Level (P), Test Coverage (I), Residual Fault Count (P),
Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (P).

9.5.3.4 System Testing

System testing integrates software with other system components such as hardware and external data
sources. The primary purpose of system testing is to fully exercise the computer-based system to find
discrepancies between the system and its original objectives. This may include performance, reliability,
safety, and functional objectives. Though other types of testing are used to detect faults and thus improve
reliability, system testing is the most applicable to measure reliability and increase the assurance of
safety.

System testing is commonly subdivided into many categories. The number and content of these
categories vary depending upon the individual performing the subdivision. Major categories include
stress, probabilistic, and performance testing. Probabilistic and performance system testing techniques
are discussed in this section. Stress testing is primarily a system test, but since it can be used in the
functional testing process it was included in Section 9.5.3.2.2.

9.5.3.4.1 Probabilistic Testing (Black-Box)

Probabilistic testing is also referred to as statistical testing. To quantify software reliability, the software
product or its components are tested with both systematic and random approaches. The systematic
perspective takes an overall approach to test control, whereas the random perspective is applied to a
specific test case. For the random approach, a predicted distribution of system behavior determines the
tests to be executed. Unusual states or rarely used portions of the system may not be included in the
predicted distribution. For that reason, especially in safety-related systems, careful attention should be
given to including test cases that require the system to take action only in rare but significant
circumstances. Test cases should avoid impossible or nonsensical events. Since the number of test cases
can be large, automatic testing tools are used to provide test input data and to check the output data.
Some tests are performed on large host computers that simulate actual operation. IEC65A(Secretariat)122
highly recommends this technique for software with very high safety integrity requirements.

Benefits: Since a specification is not required, this method can be used on poorly documented systems.
Even though some effort is required to select representative test cases, a large number of cases can be
produced with little effort. This form of testing is less prone to human bias error. Testing for failure rate

measures up to 104 failures per hour is feasible.

45

Deficiencies: If tests are performed using computer hardware that does not have the same processor
speed as the hardware on which the software is designed to run, timing issues cannot be included. Some
experts believe these tests then are not valid. If the test cases are truly random and do not represent
common operating modes of the system, then the reliability estimates generated will be misleading. Since
the number of distinct combinations of inputs is very large, a huge amount of test data is produced with
no assurance of finding all the systematic errors. Purely random test cases are inappropriate.

Interrelationship with other capabilities: This is a form of black-box testing. It should be used to
complement functional testing and in conjunction with structural unit testing.

Addressed by: IECI880 and 65A(Secretariat)122 and MoDI(00-55.

Related Metrics: Software Maturity Index (I), Minimal Unit Test Case Determination (I), Run Reliability
(P), Software Purity Level (P), Test Coverage (I), Residual Fault Count (P), Failure Analysis Using Elapsed
Time (P), Mean Time to Failure (P), Failure Rate (P).

9.5.3.5.2 Performance Testing (Black-Box)

Performance is a critical requirement in real-time and embedded systems. If the timing of a software
component is greater or smaller than expected by another component, the system's synchronization can
fail. This may initiate an event that triggers a fault-recovery function or system failure. Performance tests
verify (1) response time under varying loads, (2) percentage of execution time in the various program
segments, (3) throughput, (4) primary and secondary memory utilization, and (5) traffic rates on data
channels and communication links. Some performance testing can also occur in the unit testing processes.
However, until the complete system is integrated and tested, performance cannot accurately be tested.
Caution should be used in performance unit testing to avoid spending too much effort on fine-tuning a
code module that contributes very little to overall system performance. The most productive performance
tests are at the subsystem and system levels (Fairley, 1985).

Benefits: Performance testing detects faults that are usually never uncovered with any other type of
testing. Results of the performance tests can be used to optimize the system for the best throughput.

Deficiencies: Performance measurements require performance specifications, which are difficult to
generate (Humphrey, 1989).

Interrelationship with other capabilities: Performance tests are often used with stress testing .
Addressed by: IEC880 and MoDI00-55.

Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Minimal Unit
Test Case Determination (I), Run Reliability (P), Software Purity Level (P), Test Coverage (I), Residual
Fault Count (P), Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (I).

9.6 Installation and Verification Phase
9.6.1 System Certification

Certification is the formal process whereby the developer records and assesses whether the system
(hardware and software) has met the customer’s specifictions. For safety-related systems, certification
includes determining that the safety requirements have been met, the safety-related software has
achieved the proper software safety integrity level, and that the work associated with the development of
the system conformed to the necessary standards and guidelines. For formal certification, the appropriate
signatures of the responsible and accountable personnel are required.

46

Benefits: Legal responsibility of the customer and the developer regarding the safety of the system may
be defined by the formal certification.

Deficiencies: Certification of the system is performed in the last development phase of the software life
cycle. Costs to correct faults, increase performance, or improve reliability or safety can be considerably
higher than in earlier software life cycle phases.

Interrelationship with other capabilities: Some standards and software development environments
allow for formal certification during the various software life cycle phases. With some reviews and
audits, signatures of responsible and accountable personnel also are a requirement.

Addressed by: IECI65A(Secretariat)122, IEEEP1228, and MoDI[00-55.
Related Metrics: No metrics were found that apply to this technique.
9.6.2 Acceptance Testing (Black-Box)

Acceptance tests, also referred to as qualification tests, are performed in the system's real-world
environment to demonstrate to the customer that a system meets functional, operational, and safety
requirements. Acceptance testing is a validation process conducted by the customer. The customer
designs and writes the test cases to be performed. However, in some instances the software developer's
quality-assurance team also performs acceptance testing, and may add unit and functional test cases.
Benchmark tests, which measure the results against a predetermined standard of expected outputs and
performance, are also executed.

When a product is intended for multiple customers, acceptance testing is often performed by releasing
the system to a limited number of field sites for actual operational testing. This practice is called Beta
testing. In some environments it is feasible to operate a newly developed system or version in parallel
with the older system that it replaces; this practice is called parallel operation. It has the advantage of
ensuring an operational system even if the new system fails. However, running multiple systems may be
impossible or prohibitively expensive. Test coverage analyzers, timing analyzers, and coding standards
checkers are tools that can assist in performing acceptance testing.

Benefits: The end-user tests the system in its actual operational environment. Often the actual operator
of the system performs the tests, and therefore may use a data scenario (operational profile) that was not
considered during previous testing.

Deficiencies: If discrepancies between the tested system and the requirements are uncovered, they can
be quite costly to correct. The planning, creation, and execution of test cases by the customer requires a
significant commitment of resources. Unfortunately, some customers do not commit the appropriate level
of resources, and acceptance testing becomes ineffective.

Interrelationship with other capabilities: Acceptance testing is performed as a part of system
certification.

Addressed by: DoD2167A, IEC65A(Secretariat)122, IEEEP1228, MIL-STD882B, and MoD00-55.
Related Metrics: Functional or Modular Test Coverage (I), Software Maturity Index (I), Minimal Unit

Test Case Determination (I), Run Reliability (P), Software Purity Level (P), Test Coverage (I), Residual
Fault Count (P), Failure Analysis Using Elapsed Time (P), Mean Time to Failure (P), Failure Rate (P).

47

9.7 Operation and Maintenance Phase
9.7.1 Monitoring Degradation of System

A software system should be periodically monitored to estimate its continuing reliability. IECI880
references recommends periodic testing of operational software to detect any degradation. However, it
does not specifically relate this process to software reliability. Everett (1990) and Musa and Everett (1990)
discuss this technique in more detail. Reliability tests are used as the monitoring tool. Corrections and
upgrades to software, such as updating the operating system, revising database products, or adding
communication software, will affect system reliability. Early in a software system’s operational phase the
number of failures is relatively high, then decreases. Towards the end of its operational life, failures
increase again. Thus, graphs of failures usually form a “bathtub-shaped” curve. In analyzing a failure or
reliability trend, software developers can predict at what point in the operational phase it is more cost-
effective to replace the software than to continue maintenance. This in-service assessment also can
determine the need to increase or decrease the frequency of reliability tests.

Benefits: Reliability information can be used to determine when new software is ready for installation or
when it is time to upgrade existing software (Musa and Everett, 1990). The severity and frequency of
failures estimated from the reliability tests can be used to set priorities for correcting problems and
identifying resource needs.

Deficiencies: This technique measures reliability after a software product has been built. Modifications to
improve reliability are more costly during this phase of the software life cycle than in earlier phases. In
safety-related software systems, reliance on operational-phase information for determining system
reliability is not practical, although information acquired in this phase does provide a measurement of the
quality of the operation and maintenance processes.

Interrelationship with other capabilities: Information from this process may indicate a need to perform
a root-cause analysis.

Addressed by: IECI880.
Related Metric: Software Release Readiness.
9.7.2 Root-cause Analysis

No standard addresses the use of a root-cause analysis; however, Everett (1990) and Musa and Everett
(1990) discuss this technique. If the reliability of a software system decreases during its operation and
maintenance, then those processes themselves may be at fault. Several such factors may contribute to
degrading software reliability: (1) the customer’s definition of failure may differ from the one used by the
software developers to produce and test the product, (2) the actual operational profile is not the same as
that used in the design and test phases, (3) the original reliability goals may not reflect the requirements
of the customer, or (4) the customer may have changed his performance requirements for the software
(Everett, 1990).

Benefits: By determining the root cause of unacceptable software reliability, the customer can improve
the development processes and techniques and thus can improve future software maintenance and

development.

Deficiencies: This analysis is effective only if corrective action is performed to reduce the number of
faults introduced in the remaining life of the system.

Interrelationship with other capabilities: This analysis is initiated after monitoring system degradation.

48

Addressed by: No standards addressed this technique.
Related Metrics: Defect Density (I), Fault Days Number (I).
9.7.3 Regression Testing (White-Box and Black-Box)

Regression testing is conducted to detect software faults introduced by changes or upgrades made during
the operational life cycle phase. It is not uncommon for software fault corrections to introduce new faults
in seemingly unrelated functions. The correction of one fault may initiate an untested path or function in
previously integrated and installed systems, thus creating a system failure. Configuration management
errors are sometimes made when new or updated code modules are integrated into unchanged modules,
thus introducing incompatibilities between the new and old modules. Regression testing incorporates
selected functional, system, and integration test cases to create a regression test suite. Generally,
regression testing is performed after software has been modified and before a new release is installed.
However, the suite of tests may be run periodically to detect any regression problems related to
hardware and software interfaces. The test suite includes a comprehensive set of tests that are run
infrequently, a subset of such tests that can be run frequently, or a combination of the two. The latter
combination has proven the most effective (Humphrey, 1989).

Benefits: Regression testing detects rare pathological cases that are often overlooked in functional
testing.

Deficiencies: Regression testing does not detect software faults until new modules have been integrated
into the system. Detection at this stage increases the cost of correcting a fault over correction during unit,

functional, or system testing of the new code module(s).

Interrelationship with other capabilities: The test suite is a combination of functional, system, and
integration testing techniques. Regression testing is also used during the system integration testing phase.

Addressed by: IEEEP1228.

Related Metrics: All functional, system, and integration testing metrics apply.

10. Other Issues Addressed by Standards

10.1 Man-machine Interfaces

IEC(880 and MIL-STD882B are the only standards reviewed that address man-machine interfaces relating
to system safety and software reliability. MIL-STD882B recommends a hazard analysis specifically for
the software/human interface functions. Several standards are available for designing and testing of
human interfaces in safety-related systems. Some of these are DOE 6480.1A, EPRI NSAC-38 and 39,
IEC0960, 0964, 0965, IEEE0567, and NUREG-0700, 2254, 2496, 3010 and 3331. A review of these
standards is not included as part of this report.

10.2 Subcontract Compliance

Subcontractor software development should meet all standards applicable to the primary contractor or
vendor. This issue is addressed by DoD2167A, IEEE730 and P1228, and MIL-STDI882B.

49

10.3 Personnel Qualifications and Training

Training of personnel addresses software developers and operational staff. IECI65A(Secretariat)122 and
1014, IEEE(730 and P1228, MIL-STD882B, MoD00-55, and FAA[018A discuss the skills needed by
members of software design teams to meet software quality-assurance standards. IECI880 and IEEE[P1228
discuss training the operations staff for power generating stations. IEEEP1228 requires that on-going
training requirements for personnel with safety-related tasks be specified in a safety plan.

10.4 Inspection Personnel

In discussing requirements for development and inspection personnel, MoD00-55 recommends that the
same independent safety auditor oversee the development project from its initial stages through its entire
life cycle. To ensure independency, MoD!00-55 further recommends a separate contract be issued for the
safety auditor. The safety auditor should be commercially and managerially separate from the system
project manager to preclude any possible concerns over conflict of interest. Other standards do not
identify a single individual to oversee the development process but state what functions the personnel
shall perform.

10.5 Configuration Management

Configuration management of source code is required in all standards. IEEE[730 and P1228, FAA016A,
DoDR2167A, and MoD00-55 and 00-56 extend configuration control requirements to include
documentation generated during development. It is essential that documentation on computer-readable
media be protected against loss or corruption by maintaining duplicate copies in separate locations.

10.6 Software, Hardware, and Firmware

The level of discussion on the analysis, design, and development of computer hardware varies greatly
among industry and government standards. Five of the standards (DoD2167A, FAA013B, 016A, and
018A, and IECI65A(Secretariat)122) include firmware in their scope. IEC(1014 provides guidance on
hardware and software with very little distinction and does not address firmware.

11.Conclusion

Relying solely on measurement for assessing the reliability and safety of ultra-reliable software systems is
not sufficient. The use of quality- enhancing processes throughout all phases of the software life cycle,
together with reliability measurement procedures, provides better assurance of developing a safe and
reliable software system.

Quality-enhancing processes include (1) planning software development and specific safety-enhancing
activities; (2) requirements definition, which must include requirements for reliability, safety, and
performance; (3) a software design process that includes reliability and safety design approaches such as
defense in depth, graceful degradation, redundancy, and functional diversity; (4) testing of software
modules in the implementation, test, installation, and operation and maintenance phases; (5)
configuration management of analysis results, software development documentation, and source code;
(6) corrective action procedures; and (7) verification and validation.

This report identifies numerous techniques and measures, some of which are complimentary. The
categorizing of hazard severity and software integrity levels in MIL-STD882B, MoD00-55 and 00-56, and
IECI65A(Secretariat)122 can be applied to determine which techniques or combination of techniques
should be applied.

50

During our review of the standards, it became apparent that there were five—(IEC880 and
65A(Secretariat)122 , MoD00-55 and 00-56, and MIL-STD882B)—that best apply to safety-related
software systems for nuclear power generating stations. Two of these, IEC/880 and MIL-STD(882B, have
been approved by their organizations and are accepted within the computer industry. The other three
standards, IEC65A (Secretariat)122, and MoD[0-55 and 00-56, are still in draft form; new revisions were
released in 1991. The fact that these new releases are consistent with their previous versions indicates
acceptance of the practices they recommend by the user community. IEEE[352 and 577 are very concise;
however neither standard addresses software to the extent of the five standards mentioned above.

The proposed draft standard, IEEEP1228, is near a final vote by the IEEESoftware Engineering
Standards Committee. In its current form it contains information that is applicable to nuclear power
generating stations. This standard should be released in final form by late 1992. It is one of two that, when
available in final form, should be reviewed again for recommendations applicable to software systems in
nuclear power generating stations. The other standard, IEEE1012, is currently under revision. This
standard's focus is verification and validation, using a hazard categorization level similar to that in MIL-
STD882B.

51

Appendix A. Techniques and Procedures for Quality Assurance Procedures Cross-Referenced to Standards.

Table Al.

Topic DoD |DoD |FAA | FAA |FAA |IEC 1EC IEC [EEE | IEEE |IEEE |IEEE |IEEE [MIL- [MoD | MoD
2167 | 2168 | 013B | 016A | 018A | 880 1014 | 65A() | 279 352 577 730 P1228 | STD | 00-55 | 00-56
A 122 882B

Inclusion of 3 . . 3 . .

firmware

SQA plans or

UHOanCﬂmw

Reviews and
audits

Requirements
phase

Design phase

Configuration
management

Error reporting

Verification and
validation

Software
performance

Man-machine
interfaces

Language
characteristics

Techniques and
methodologies

Coding
standards

Documentation
standards

Subcontractor

Software
developer
training

Formal methods

52

Appendix B. Techniques and Procedures for Software Safety Cross-Referenced to Standards.

Table B1.

Topic DoD |DoD |FAA |[FAA |FAA |IEC IEC 1IEC IEEE | IEEE | IEEE |IEEE |IEEE [MIL- | MoD | MoD
2167 | 2168 | 013B | 016A | 018A | 880 1014 | 65A() | 279 352 577 730 P1228 | STD | 00-55 | 00-56
A 122 882B

General Safety o o o o o o

Safety Plans . . .

Hazard . o

Severity Levels

Software Safety
Integrity Levels

FMEA and
CCFA

Risk
Management

Software to
Monitor
Hardware and
Software

Preliminary
Hazard
Analysis

System Hazard
Analysis

Operating and
Support
Hazard
Analysis

Occupational
Health Hazard
Analysis

53

Table B1. (continued)

Topic DoD |DoD |FAA |FAA [FAA |IEC [IEC |[IEC IEEE | IEEE |[IEEE |IEEE |IEEE [MIL- | MoD | MoD
2167 | 2168 | 013B | 016A | 018A | 880 1014 | 65A() | 279 352 577 730 P1228 | STD | 00-55 | 00-56
A 122 882B

Software D . .

Requirements

Hazard

Analysis

Software Top-
level Design
Hazard
Analysis

Software Detail
Design Hazard
Analysis

Software Code-
Level Hazard
Analysis

54

Appendix C. Techniques and Procedures for Software Reliability Cross-Referenced to Standards

Table C1.

Topic DoD [DoD |FAA [FAA |FAA [IEC |[IEC IEC | IEEE |IEEE [IEEE |IEEE |IEEE | MIL- | MoD | MoD
2167 |[2168 | 013B | 016A | 018A | 880 1014 | 65A() | 279 352 577 730 P1228 | STD | 00-55 | 00-56
A 122 882B

Concept Phase

Set Reliability
Goals

Identify and
Categorize Failure
Modes

Fault-tree
Modeling

Event-tree
Analysis

Cause-
consequence
Diagram

Reliability Block
Diagram

Probability
Modeling

Requirements
Analysis Phase

Operational Profile

Markov Modeling

Monte Carlo
Modeling

ﬁmwimvlbm Hoo_m
and Translators

55

Table C1. (continued)

Topic

DoD
2167
A

DoD
2168

FAA
013B

FAA
016A

FAA
018A

IEC
880

IEC
1014

IEC
65A()
122

IEEE
279

IEEE
352

IEEE
577

IEEE
730

IEEE
P1228

MIL-
STD
882B

MoD
00-55

MoD
00-56

Design Phase

Determine
Influential Factors
on Reliability

Reliability Time
Line Modeling

Fault Detection
and Diagnosis

Safety Bag

Sneak
Analysis

Circuit

Retry Fault

Recovery

n-Version
Programming

Recovery Block
Programming

Design Metrics

Petri Nets

Test Phase

Certifying
Acquired or
Reused Software
Reliability

Reliability Growth
Modeling

Software Testing

Installation and
Verfication Phase

System
Certification

Acceptance Testing

Operation and
Maintenance
Phase

Monitoring
Degradation of
System

Root-cause
Analysis

Regression Testing

56

Appendix D. Glossary of Metrics

cause and effect graphing. A graphical technique that assists in identifying incomplete or ambiguous
requirements. It is a formal translation of a natural-language specification into its input
conditions and expected outputs. The inputs and the effects of their values are identified and
displayed on a boolean graph.

combined hardware/software system operational availability. A technique for calculating the
availability of a computer system that includes both hardware and software. This measure, which
determines system availability, is generally derived from the Markov Chain model.

completeness. A measure representing the degree to which the software specification includes all
software requirements. Ten parameters are calculated from various measures such as the number
of functions not satisfactorily defined, number of functions, and number of calling routines. Each
of these parameters is multiplied by a weight between 0. and 1.0, where the sum of the weights
must equal 1.0. These parameters and their weights are summed to produce the completeness
measure.

cumulative failure profile. Graph of the cumulative number of failures in the integration and acceptance
test phases. This technique is used to predict the reliability through the profile of the number of
failures detected. In the testing phase, failures (categorized by their severity) are totaled and then
plotted over time. The shape of the curve can be used to determine when testing is complete (the
curve flatens out because few or no errors are found over a period of time). If the failures are also
totaled by module, the curve can identify modules that need further testing. The graph can also
show a trend in the length of time required to detect failures; thus the amount of time required to
complete testing can be estimated.

cyclomatic complexity. A quantitative number that reflects the relative complexity of a software
component. A graph is used to display sequential groups of program statements as nodes and the
program flow between the statements as edges. The measure can be calculated by three methods:
(1) number of edges — number of nodes + 1, (2) number of regions in the graph, and (3) number
of nodes with multiple exit paths.

data or information flow complexity. A quantitative value derived from paths that flow into and out of a
software component and the data structures that are used as input and output to the component.
This measure is used to evaluate information flow structure, module information flow structure,
and the complexity of the module’s interconnections. This measure can be weighted by the length
of the software component in number of lines of source statements.

defect density. Number of unique defects detected during an inspection process categorized by the
severity and class of the defect. A low value may identify a bad process. However, a low value
may also indicate a good process and a good product. This measure can be used after design and
code inspections to determine whether the inspection process requires further examination.

defect indices. This measure is a relative index measuring the correctness of software throughout
development. For each phase in the life cycle, the number of defects are categorized as serious,
medium, or trivial. Weights are applied to each of these categories; for example, the weight for
serious defect is 10, medium is 3, and trivial is 1. A phase index is calculated by using the number
of defects in each category, their weights, and the sum of the defects found during that life cycle
phase. A defect index is calculated from the sum of the phase indices weighted by their phase

57

number (e.g., design = 2, unit test = 3, and integration test = 4) and the size of the product at that
life cycle phase.

design structure. Measure used to determine the simplicity of design of a software product and potential
problem areas. The design structure is the sum of six derivatives, each weighted by the user’s
priority: (1) top-down design, (2) module dependence, (3) module dependent on prior
processing, (4) database size, (5) database compartmentalization, and (6) single entry and exit per
module. Each derivative is calculated from the module or database elements that satisfy a
particular condition.

error distributions. Graphs of the number of errors plotted against descriptive characteristics such as life
cycle, fault types, severity of fault, phase where the fault was introduced, and preventive
measure. An example is the number of faults plotted against life cycle values of concept,
requirements, design, implementation, test, operation, and retirement. The graphs can be
analyzed for trends and to identify areas where process improvement may be needed.

estimated number of faults remaining. An estimate of the number of faults in a software product. The
technique inserts faults (seeding) into the software’s components, and the product is then tested.
The number of faults remaining can be estimated from the number of unseeded faults found, the
number of seeded faults, and the number of seeded faults found.

failure analysis using elapsed time. A failure-analysis technique in which the estimated number of
remaining faults and software reliability are used to determine reliability growth. It is used to
predict the total number of faults in the software and software reliability, and to estimate the
resources needed. It uses severity-level categorization when observing the execution time
between failures. This interval, the failure, and any associated failures are recorded. Well-known
statistical tests, such as goodness of fit, enable an estimate of the number of remaining faults,
MTTF, and reliability.

failure rate. Measures the number of failures per unit of time. It can be used to indicate the growth of
software reliability over testing time.

fault-days number. Represents the number of days that faults spend in the software product from their
creation to their removal. For each fault detected and removed during any life cycle phase, the
number of days from its creation to its removal is determined. If the creation date of a fault
cannot be determined, the fault is assumed to have been created at the middle of the phase where
it was introduced. This measure is an indicator of the quality of the software development
process.

fault density. Ratio of the number of unique faults found in a software component over a given time
period to the size of the component. This measure predicts the remaining faults by comparison
with the expected fault density, determines whether sufficient testing has been completed, and
establishes standard default densities for comparison and prediction. Software reliability may be
qualitatively assessed from information on testing sufficiency. In earlier phases of the life cycle,
when KSLOC (thousands source lines of code) is unavailable, other normalizing factors, such as
thousands of words of prose, can be used. This measure may categorize faults by their severity,
failure types (e.g. input, output, or both), and fault types (e.g. design, coding, and
documentation).

58

functional or modular test coverage. Measure used to calculate an index for software test coverage. It is
the ratio of the number of software functions or modules tested to the total number of functions
or modules. This measure provides a percentage of the software tested at any time.

graph-theoretic complexity for architecture. A basic complexity measure that uses graphical techniques
to produce three complexity values: static complexity, generalized static complexity, and
dynamic complexity. A static or dynamic graph is created from software components or modules
called nodes and their interconnections, called edges. The specific measure is then calculated
from the number of edges, the number of nodes, and resource parameters determined by the
user.

independent process reliability. A method for computing the reliability of a system composed of
noninterrelated components that have no loops.

man-hours per major defect detected. Measures the average number of hours the total inspection team
spends preparing for and conducting inspections per defect found. It provides a quantitative
figure that can be used to evaluate the efficiency of the design and inspection processes. The
measure reflects the ratio of the total number of hours an inspection team prepares for and
conducts inspections, including all inspections to date, to the total number of major defects
detected.

mean time to discover the next k faults. Estimated time (mean time) that will elapsed before some
number k of faults are detected. The mean time to failure between failure i and failure i + 1 is
summed for the next k faults. By determining the length of time to discover the next k faults, an
estimate as to when a software product reaches the desired reliability probability can be
calculated.

mean time to failure. Average time between system failures. This measure is the basic parameter
required by most software reliability models. It can include weighting or categorization of the
failures by complexity, severity, or reinsertion rate. Failures times of the software system are
recorded, and the time between failures is calculated. If categorization—such as severity—is
being used, then the time of occurrence for failure i and failure i + 1 of a particular severity is
used to calculate the mean value for that category.

minimal unit test case determination. This technique identifies the smallest number of test cases that are
needed to cover all independent paths in a software component. This is useful in generating a
minimum set of test cases for unit testing. The cyclomatic complexity is used to determine the
number of distinct paths. Its graph identifies the nodes to be executed within the path for each
test case.

number of conflicting requirements. A mapping technique that identifies the number of software
requirements that may conflict with another. Mappings from the same architecture component to
more than one requirement and from multiple architecture components to one requirement are
examined for inconsistencies.

number of entries/exits per module. The sum of the number of entry and exit points in a software
component. This measure is used as a complexity indicator for the software architecture.

requirements compliance. This technique verifies compliance to the requirements by using system

verification diagrams. Such diagrams embody a logical interconnection of decomposition
elements and can detect inconsistencies, incompleteness, and misinterpretations. A graph of

59

software components or elements is created by decomposing a system’s functional, performance,
and other requirements into graphical elements. These elements are connected according to
connectivity and reachability rules specified in IEEE982.2.

requirements traceability. A technique whereby software requirements are mapped onto the software
design architecture. This measure aids in identifying missing or additional requirements. It is the
percentage ratio of the number of requirements that are met by the software design architecture
to the total number of original requirements. If the percentage is less than 100, some requirements
were not included; if it is greater than 100, requirements may have been added. If the percentage
is not equal to 100%, the requirements and the design architecture should be examined for
consistency.

reliability growth function. A functional technique that estimates the reliability of a system during
system testing and when the system design changes continuously during the design testing
process. This measure provides an estimate of the time when the desired failure rate or fault
density will be achieved. It is calculated from the total number of test cases during a specific
stage, the total number of successful test cases in that stage, and the total number of stages.

RELY. A table of processes to be implemented, cross-referenced by the level of reliability required and
the life cycle. This technique uses five reliability ratings: very low, low, nominal, high, and very
high. Depending upon the reliability rating, the processes required for each development phase
can be adjusted to include processes for ensuring that the product achieves the desired reliability
goal. An example from this table identifies, for a very high reliability rating, the processes in the
requirements and product design life cycle phase that should contain detailed verification (e.g.,
quality assurance, configuration management, and documentation), independent verification and
validation of interfaces, and very detailed test plans and procedures.

residual fault count. The number or remaining faults in a software product. It measures software
integrity by using the observed time between failure i and failurei + 1 at a particular severity
level and the number of failures at that severity level during the ith time interval. Jelinski-
Moranda and Poisson-process models are implemented to produce this measure.

run reliability. Measures the reliability of a software product in any life cycle where a set of discrete
input patterns and states can be identified.

software documentation and source listing. A quality measure of the software documentation and
source listing. The technique is used to collect information to identify software maintenance
products and their components that may be inadequate for use in a software maintenance
environment. Two questionnaires are used to examine the format and content of the software
documentation and source listings. The questionnaires focus on modularity, descriptiveness,
consistency, simplicity, expandability, and testability. The two questionnaires, Software
Documentation Questionnaire and Software Source Listing Questionnaire, are described in Software
Maintainability Evaluators Guide, AFOTEC Pamphlet 800-2, Vol. 3, No 2, March 1987.

software maturity index. An indicator of the maturity of a software product. The number of software
modules added, deleted or changed is subtracted from the total number of modules in the
software product, giving the number of mature modules remaining. The ratio of the mature
modules remaining to the total number of modules is then calculated.

60

software purity level. This measure provides an estimate of the change in the hazard rate of a software
product from the time of initial operation to any specific point in time during the operational
phase.

software release readiness. A measure used to determine whether a software product is ready to be
released to the customer. It assumes that specific issues can be combined to assess the release
readiness of a software product and the risk of using the software system. Such issues include
functional test coverage, software maturity, documentation quality factors, machine interface,
and software source code quality factors. For each issue an associated risk ranging from 0. to 1.0
(where 0 denotes no risk) and a relative weight (sum of weights equal 1.0) is assigned
subjectively. A modification factor is also applied to the associated risk. This modification factor,
ranging from 0. to 1.0, is based upon the subjective or quantified influence between specific
issues. The associated risks, relative weights, and modification factors are subsequently used to
determine the risk .

software science measures. A group of measures (e.g., program vocabulary, observed program length,
program complexity, and program level) based upon the number of distinct operands and
operators and their occurrences. These measures provide an assessment of software complexity,
predict the length of a software program, and estimate the time an average programmer will take
to implement a given algorithm.

system performance reliability. A measure of the probability that each performance requirement will be
met during the operational phase.

test accuracy. An indicator of the effectiveness of the testing phase in detecting software faults. This
measure uses the number of seeded faults and the estimated number of detectable seeded faults
to calculate test accuracy. The software system or component to be tested is seeded with faults.
The system or component is then tested, and the number of seeded faults detected in each testing
interval is recorded. A mathematical model is used to calculate the cumulative seeded faults
detected across the total testing period. The closer this value is to 1.0, the better the test accuracy.

test coverage. Percentage of test cases or functional capabilities executed during a set of tests. This
measure identifies the completeness of the testing process from the developer's and the
customer's perspectives.

testing sufficiency. An indicator of the quality of the test-case coverage. This measure compares actual
and predicted faults to assess the sufficiency of software integration testing. Total predicted faults
should be calculated using either micro quantitative software reliability models based on path
structure or Halstead's software science measures. The number of remaining faults is calculated
and compared with the total number of faults detected to date. The results determine the
sufficiency of the testing process, and appropriate actions can be taken. Actions may include
applying either a test coverage measure to determine whether an adequate number or variety of
test cases was executed or a fault density measure to determine whether modules have a high
number of errors and should be replaced or redesigned.

61

Bibliography

AFSCP1800-14 (1987), Air Force Systems Command Software Quality Indicators, January 20, 1987.

Butler, R, and G. Finelli (1991), “The Infeasibility of Experimental Quantification of Life-Critical Software
Reliability,” Proceedings of the ACM SIGSOFT '91 Conference on Software for Critical Systems,
December 1991.

Cullyer, W.], S. J. Goodenough, and B. A. Wichmann (1991), "The Choice of Computer Languages for
Use in Safety-Critical Systems,” Software Engineering J. 6, March 1991.

DoD12168 (1979), Defense System Software Quality Program , August 1979.

DoD2167A (1988), Defense System Software Development, February 1988.

Everett, W. (1990), “Software Reliability Measurement,” IEEE[. on Selected Areas in Communications,
February 1990.

FAA013B (1989), Quality Control Program Requirements, September 1989.

FAA16A (1987),Quality Control System Requirements, September 1987.

FAAI018 (1987), Computer Software Quality Program Requirements, September 1987.

Fairley, R. E. (1985), Software Engineering Concepts (McGraw-Hill).

Humphrey, W. S. (1989), Managing the Software Process (Addison-Wesley).

IECI65A (Secretariat)122 (1989), Software for Computers in the Application of Industrial Safety-Related Systems,
August 1, 1991. This supersedes IECI65A (Secretariat)94 I and II, August 1989.

IECI0880 (1986), Software for Computers in the Safety Systems of Nuclear Power Stations.

IEC[1014 (1981) Programmes for reliability growth.

IEEE279 (1971), Criteria for Protection Systems for Nuclear Power Generating Stations,.

IEEE352 (1987), Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Safety
Systems.

IEEE(577 (1976), Requirements for Reliability Analysis in the Design and Operation of Safety Systems for Nuclear
Power Generating Stations , reaffirmed 1986.

IEEE982.1 (1988), Standard Dictionary of Measures to Produce Reliable Software.

IEEE982.2 (1988), Guide for the Use of IEEEStandard Dictionary of Measures to Produce Reliable Software,
Tables 5.1-1 and 4.2-1 through 4.2-9 reproduced from IEEE982.1-1988 with permission of the IEEE,
©1988 by the Institute of Electrical and Electronics Engineers, Inc.

IEEE[P1228 (1992), Standard for Software Safety Plans, Draft G, January 1992.

Interim Defence Standard 00-55 (1991), The Procurement of Safety Critical Software in Defense Equipment-
Parts 1 and 2, April 1991.

Interim Defence Standard 00-56 (1989), Requirements for the Analysis of Safety Critical Hazards, May 1989.

Keiller, P., and D. Miller (1991), “On the Use and the Performance of Software Reliability Growth
Models,” Reliability Engineering and System Safety 32.

Lawrence, J. D. (1991), Tutorial on Software Reliability and Safety Engineering, Lawrence Livermore National
Laboratory, Livermore, CA, draft internal report .

Leveson, N. G, S.S. Cha, J. C. Knight, and T. J. Shimeall (1990), “The Use of Self Checks and Voting in
Software Error Detection: An Empirical Study,” IEEE(Trans. on Software Engineering, April 1990.

MIL-STD(882B (1984) System Safety Program Requirements, March 1984.

Musa, J. (1989),” Tools for Measuring Software Reliability,” IEEE Spectrum, February 1989.

Musa, J. and W. Everett (1990), “Software-Reliability Engineering: Technology for the 1990s,”
IEEE(Software, November 1990.

Musa, J., A. Iannino, and K. Okumoto (1987), Engineering and Managing Software with Reliability Measures,
(McGraw-Hill, New York, NY).

Musa, J., A. Iannino, and K. Okumoto (1988), Software Reliability: Measurement, Prediction, Application
(McGraw-Hill, New York, NY).

Myers, G.J. (1976), Software Reliability: Principles and Practices, (Wiley-Interscience).

62

Parnas, D. L. (1990), “Reviewable Development of Safety Critical Software,” Proceedings of the International
Conference on Control & Instrumentation in Nuclear Installations, May 1990.

Pilsworth, R. (1988), “Software Standards for Defense Procurement,” IEEEComputers and Safety ,
November 1988.

Pressman, R. S. (1987), Software Engineering: A Practitioner’s Approach, (McGraw-Hill, New York, NY).

Shooman, M. L. (1983), Software Engineering: Design, Reliability, and Management, (McGraw-Hill, New
York, NY).

Technical Committee 7 (1988), Dependability of Critical Computer Systems, guidelines produced by the
European Workshop on Industrial Computer Systems (Elsevier Applied Science).

Thayer, T. A., M. Lipow, and E. C. Nelson (1978), Software Reliability, A Study of Large Project Reality, Vol. 2,
(TRW series on software technology).

63

